Epidemiology Program: Outbreak Investigation

Bela T. Matyas, MD, MPH
Massachusetts Department of Public Health
2007

Epidemiology

- The study of the association between an exposure, risk factor or event and an outcome, illness or result:

 Exposure/
 Risk factor/
 Event Outcome/
 Illness/
 Result

- Can study adverse health outcomes or positive health outcomes

(c) 2008, Bela T. Matyas, MD, MPH
3. Epidemiology, cont.

Epidemiology, cont.

• Can study this association in either of two ways:
 – Compare those “exposed” to those “not exposed” to see how many of each group develop the outcome (Cohort or Follow-up approach)
 – Compare those “with the outcome” to those “without the outcome” to see how many of each group experienced the exposure (Case-Control approach)

(c) 2008, Bela T. Matyas, MD, MPH

4. Epidemiology: Interpretation of Results

Epidemiology: Interpretation of Results

• Identifies the presence or absence of an association between an exposure and an outcome, and helps characterize the magnitude and validity of the association
• Does not establish causation:
 – Also need to consider biological plausibility, temporal elements, etc.

(c) 2008, Bela T. Matyas, MD, MPH
5. Attributes of a Public Health Surveillance System

Attributes of a Public Health Surveillance System

- Sensitivity
- Timeliness
- Representativeness
- Predictive value
- Accuracy and completeness
- Simplicity
- Flexibility
- Acceptability

(c) 2008, Bela T. Matyas, MD, MPH

6. Confidentiality

Confidentiality

- Public health surveillance deals with potentially sensitive information
 - Medical information
 - Some diseases are stigmatizing
- Systems need to protect confidentiality

(c) 2008, Bela T. Matyas, MD, MPH
7. Basic Structure of Public Health Surveillance

Basic Structure of Public Health Surveillance

- **Core surveillance systems:**
 - Health care providers (physicians)
 - Hospitals/ICPs
 - Laboratories
- **Supplemental surveillance systems:**
 - Sentinel surveillance
 - Proxy surveillance, e.g. syndromic, risk factor

(c) 2008, Bela T. Matyas, MD, MPH

8. Factors Affecting Occurrence of Infection

Factors Affecting Occurrence of Infection

- **Agent factors**
 - Virulence
 - Antibiotic resistance
- **Host factors**
 - Age, physical condition
 - Genetics
 - Immunity
- **Transmission route**

(c) 2008, Bela T. Matyas, MD, MPH
9. How Communicable Diseases are Transmitted

How Communicable Diseases are Transmitted

- Airborne, Droplet-borne
- Person-to-person
- Waterborne, Foodborne
- Bloodborne
- Sexually transmitted
- Vehicle-borne
- Zoonotic (incl. vector-borne)

© 2008, Bela T. Matyas, MD, MPH

10. General Principles of the Epi Field Investigation

General Principles of the Epi Field Investigation

Determine:
- Etiologic agent
- Source
- Mode of transmission
- Persons at risk
- Predisposing factors

Tools:
- Descriptive Epi
- Analytical Epi

© 2008, Bela T. Matyas, MD, MPH
11. Steps in Conducting a Field Investigation

Steps in Conducting a Field Investigation

• Confirm the diagnosis
• Confirm the existence of an outbreak
• Determine the number of cases
• Orient the data in terms of person, place and time
• Determine who is at risk
• Develop a hypothesis; compare hypothesis to fact
• Plan a more systematic study, if necessary
• Prepare a written report
• Implement control & prevention

(c) 2008, Bela T. Matyas, MD, MPH

12. Confirm the Diagnosis

Confirm the Diagnosis

• Use standard laboratory techniques
 — Serology
 — Culture, PFGE
 — PCR and molecular methods
• Document symptomatology
 — If most patients have similar symptoms, only
 15-20% of cases need be laboratory confirmed

(c) 2008, Bela T. Matyas, MD, MPH
13. Confirm the Existence of an Outbreak

Confirm the Existence of an Outbreak

- The terms “outbreak” & “epidemic” are subjective
- Use surveillance data
- Rule out artifactual causes
 - Changes in local reporting practices
 - Increased interest in the disease
 - Changes in diagnostic methods
 - New health care provider in town

(c) 2008, Bela T. Matyas, MD, MPH

14. Determine the Number of Cases

Determine the Number of Cases

- Create a workable case definition
 - Use accepted, usual disease presentation with or without lab confirmation
 - Include signs & symptoms of the disease
- Decide how to find cases
 - Routine vs. intensive
- Inquire about and count cases
- Collect basic information

(c) 2008, Bela T. Matyas, MD, MPH
15. Develop an Initial Case Definition

Develop an Initial Case Definition

- Set of criteria for deciding whether an individual should be classified as “ill”
- Objective criteria
- Outbreak-associated vs. background
 - Primary vs. secondary cases

16. Case Definitions

Case Definitions

- Begin general; become increasingly specific as information is gathered
 - Person, place and time associations
 - Clinical criteria
- Classify cases based on certainty
 - Definite/Confirmed
 - Probable/Presumptive
 - Possible/Suspect
17. “Describe” the Outbreak

“Describe” the Outbreak

• Time
 – Epidemic Curve

• Place
 – Geographic location of the cases
 – Geographic links, if any

• Person
 – Age, gender, race/ethnicity
 – Occupation
 – Symptoms

(c) 2008, Bela T. Matyas, MD, MPH

18. Descriptive Epidemiology

Descriptive Epidemiology

• Concerned with description rather than explanation

• Looks for associations between cases based on person, place and time considerations:
 – Person - demographics, symptoms
 – Place - location, common exposures
 – Time - onset of illness, epidemic curve

(c) 2008, Bela T. Matyas, MD, MPH
19. **Person: Frequency Tables**

Person: Frequency Tables

<table>
<thead>
<tr>
<th>Age</th>
<th>Freq</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1</td>
<td>2.9%</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>5.7%</td>
<td>8.6%</td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>11.4%</td>
<td>20.0%</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>8.6%</td>
<td>28.6%</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>8.6%</td>
<td>37.1%</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>5.7%</td>
<td>42.9%</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>8.6%</td>
<td>51.4%</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>5.7%</td>
<td>57.1%</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>2.9%</td>
<td>60.0%</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>2.9%</td>
<td>62.9%</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>2.9%</td>
<td>65.7%</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>9.6%</td>
<td>74.3%</td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>14.3%</td>
<td>88.6%</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>2.9%</td>
<td>91.4%</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>5.7%</td>
<td>97.1%</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>2.9%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

(c) 2008, Bela T. Matyas, MD, MPH

20. **Place: Spot Maps**

Place: Spot Maps

"...I found that nearly all the deaths had taken place within a short distance of the pump."

Dr. John Snow, September 1854

(c) 2008, Bela T. Matyas, MD, MPH
21. Place: Common Exposure Location

Place: Common Exposure Location

• Examples
 – Case 1 – rest. A, B, C, D
 – Case 2 – rest. B, E, F
 – Case 3 – rest. A, B, G, H, I
 – Case 4 – rest. B, D, J, K

(c) 2008, Bela T. Matyas, MD, MPH

22. Place: Common Exposure Location (cont.)

Place: Common Exposure Location (cont.)

• Same restaurant
• Multiple restaurants, same chain or owner
• Multiple chains, common distributor

(c) 2008, Bela T. Matyas, MD, MPH
23. **Point-Source Exposure**

![Point-Source Exposure](image1)

(c) 2008, Bela T. Matyas, MD, MPH

24. **Ongoing Exposure**

![Ongoing Exposure](image2)

(c) 2008, Bela T. Matyas, MD, MPH
25. Secondary Exposures

Secondary Exposures

Number

1 3 5 7 9 11 13 15

(c) 2008, Bela T. Matyas, MD, MPH

26. Identify Persons At Risk

Identify Persons At Risk

- Collect & organize all information about ill individuals
 - number ill
 - general characteristics

- Use analytical techniques to confirm who is at risk

(c) 2008, Bela T. Matyas, MD, MPH
Develop a Hypothesis

- Most challenging aspect of investigation
- Weigh clinical, laboratory, and epidemiologic features of the disease to hypothesize what exposure(s) caused the outbreak
 - E.g., GI illness: foodborne, waterborne, person-to-person, zoonotic, etc.
29. Case Definition vs. Hypothesis

Case Definition vs. Hypothesis

- Case Definition
 - Person
 - Place
 - Time
 - Symptoms
- Classifies cases vs. controls

- Hypothesis
 - Theory
 - Describes exposure to test analytically

Do NOT include hypothesis in case definition!!!

(c) 2008, Bela T. Matyas, MD, MPH

30. Compare Hypothesis to Facts

Compare Hypothesis to Facts

- “Square” the hypothesis with clinical, laboratory and other epidemiological facts of the investigation
- Is hypothesis at least biologically possible?
- Incompatible hypotheses must be reconsidered

(c) 2008, Bela T. Matyas, MD, MPH
31. Conduct an Analytical Study

Conduct an Analytical Study

- To test hypothesis
- Chose appropriate study design
 - Cohort
 - Case-Control

(c) 2008, Bela T. Matyas, MD, MPH

32. Analytical Epidemiology

Analytical Epidemiology

- Helps identify direction, strength and validity of association
- Compare by exposure status
 - Cohort (Follow-up) study
 - Experimental study
- Compare by outcome status
 - Case-Control study

(c) 2008, Bela T. Matyas, MD, MPH
33. Measures of Association Between Exposure & Disease

Measures of Association Between Exposure & Disease

• Selection of measure depends on type of study
 — “Relative risk” — cohort studies
 • Risk of developing disease given the exposure
 — “Odds ratio” — case-control studies
 • Odds of having the exposure given the disease

(c) 2008, Bela T. Matyas, MD, MPH

34. Cohort Studies

Cohort Studies

• Groups of exposed and unexposed individuals can easily be identified

• Compare risk of illness by whether exposure did or didn’t occur (e.g., food was/wasn’t eaten)

(c) 2008, Bela T. Matyas, MD, MPH
Attack Rate: Measure of Occurrence

Attack Rate (AR)

- Expresses occurrence of a disease among a particular at-risk population for a limited period of time, often due to a very specific exposure
- Can be event-specific or food-specific, for example

\[
AR = \frac{\text{Number of ill people with exposure}}{\text{Total number of people with exposure}}
\]

(c) 2008, Bela T. Matyas, MD, MPH

Estimating Risks Associated with “Exposure”

Compare attack rates among exposed and unexposed

\[
\text{Relative Risk} = \frac{\text{Attack Rate (exposed)}}{\text{Attack Rate (unexposed)}}
\]

(c) 2008, Bela T. Matyas, MD, MPH
37. Using the 2 by 2 Table to Calculate Relative Risk

Using the 2 by 2 Table to Calculate Relative Risk

\[
RR = \frac{a}{c} / \frac{a+b}{c+d}
\]

- 1 → No Association
- RR < 1 → Negative Association
- RR > 1 → Positive Association

(c) 2008, Bela T. Matyas, MD, MPH

38. Case-Control Studies

Case-Control Studies

- Used when groups of exposed and unexposed individuals cannot easily be identified

- Compare ill with non-ill individuals to determine likelihood of having had the exposure (e.g., eating a specific food)

(c) 2008, Bela T. Matyas, MD, MPH
39. Odds Ratio from Case-Control Studies

Odds Ratio from Case-Control Studies

- Measurement of the odds of having an exposure (e.g., specific food consumption) given the disease
- Estimates the Relative Risk

\[
\text{Odds Ratio (OR)} = \frac{\text{Odds of exposure among cases}}{\text{Odds of exposure among controls}} = \frac{a/c}{b/d} = \frac{ad}{bc}
\]

(c) 2008, Bela T. Matyas, MD, MPH

40. Using the 2 by 2 Table to Calculate Odds Ratio

Using the 2 by 2 Table to Calculate Odds Ratio

<table>
<thead>
<tr>
<th>Disease</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes (+)</td>
<td>a</td>
</tr>
<tr>
<td>No (-)</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes (+)</td>
<td>a</td>
</tr>
<tr>
<td>No (-)</td>
<td>c</td>
</tr>
</tbody>
</table>

\[
\text{OR} = \frac{\frac{a/c}{b/d}} = \frac{ad}{bc}
\]

OR = 1 ➞ No Association
OR < 1 ➞ Negative Association
OR > 1 ➞ Positive Association

(c) 2008, Bela T. Matyas, MD, MPH
41. Validity of Findings

Validity of Findings

Is the observed association between exposure and disease due to alternative explanations?

- Bias: systematic error (selection, information {recall, interviewer, misclassification})
- Confounding
- Chance: sampling variability and sampling size

(c) 2008, Bela T. Matyas, MD, MPH

42. Examples of Bias

Examples of Bias

- Random misclassification of cases vs. controls or exposed vs. unexposed
 - Categories of persons less “clean”
 - Biases OR or RR toward “1.0”
- Recall bias
 - Cases better remember exposures than do controls
 - Problem with retrospective studies
 - May result in inflated OR

(c) 2008, Bela T. Matyas, MD, MPH
43. Confounding

Confounding

- Alternative explanation for the association, linked to both exposure and outcome

(c) 2008, Bela T. Matyas, MD, MPH

44. Evaluating the Role of Chance

Evaluating the Role of Chance

- P value
 - Probability a given association could have occurred by chance alone
 - “Statistically significant” defined as $p \leq 0.05$
 - Consider all available evidence when interpreting P values

(c) 2008, Bela T. Matyas, MD, MPH
45. Evaluating the Role of Chance, cont.

Evaluating the Role of Chance, cont.

- 95% Confidence Interval
 - Range within which the true association lies, based on 95% assurance

(c) 2008, Bela T. Matyas, MD, MPH

46. P Values and Confidence Intervals, Example 1

P Values and Confidence Intervals, Example 1

\[
RR = \frac{5}{(5 + 10)} = \frac{9}{(9 + 11)} = 0.3333
\]

\[
RR = 0.74
\]

95% confidence limits for RR:

\[
0.43 < RR < 2.79
\]

Uncorrected \(P \)-value = 0.486

(c) 2008, Bela T. Matyas, MD, MPH
47. **P Values and Confidence Intervals, Example 2**

\[
RR = \frac{11 / (11 + 4)}{3 / (3 + 17)} = \frac{7.333}{.15}
\]

\[
RR = 4.89
\]

95% confidence limits for RR:

\[
1.65 < RR < 14.50
\]

Uncorrected \(P\)-value = \(0.000490\)

(c) 2008, Bela T. Matyas, MD, MPH

48. **P Value: Effect of Sample Size**

\[
\text{Exposure} \quad + \quad - \quad \text{Total}
\]

\[
\begin{array}{ccc}
\text{Disease} & + & - & \text{Total} \\
+ & 4 & 1 & 5 \\
- & 1 & 2 & 3 \\
\end{array}
\]

Fisher's Exact \(P\)-value = .46

\[
OR = 8/1 = 8
\]

(c) 2008, Bela T. Matyas, MD, MPH
49. P Value: Effect of Sample Size, cont.

P Value: Effect of Sample Size, cont.

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Disease</th>
<th>+</th>
<th>-</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>6</td>
<td>16</td>
</tr>
</tbody>
</table>

Fisher’s Exact P-value = 0.12

$OR = \frac{32}{4} = 8$

(c) 2008, Bela T. Matyas, MD, MPH

P Value: Effect of Sample Size, cont.

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Disease</th>
<th>+</th>
<th>-</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>12</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>9</td>
<td>24</td>
</tr>
</tbody>
</table>

Fisher’s Exact P-value = 0.04

$OR = \frac{72}{9} = 8$

(c) 2008, Bela T. Matyas, MD, MPH
51. The Significance of “Significance”

The Significance of “Significance”

“Not significant” does not necessarily mean “no association”… it may reflect a study size too small to detect a true association in the source population

Field Epidemiology, 1986, Michael B. Gregg

(c) 2008, Bela T. Matyas, MD, MPH

52. Implement Control & Prevention Measures

Implement Control & Prevention Measures

- Remove (embargo) or recall contaminated food products
- Remove infectious foodhandlers or employees
- Propose new methods of operating
- Re-emphasize proper procedures or behavioral practices
- Recommend educational courses
- Close facilities

(c) 2008, Bela T. Matyas, MD, MPH
53. Outbreak Investigation and Control

Outbreak Investigation and Control

- Relationship with:
 - Local health departments
 - Neighboring states
 - CDC, FDA, USDA
 - Hospitals & health care providers

54. Foodborne Diseases

Foodborne Diseases

- Well established surveillance methods
 - Core systems
 - Sentinel systems
- Changing nature of foodborne diseases
 - Foodhandler hygiene
 - Regional & international outbreaks
- New advances in lab testing (e.g. PFGE)
Foodborne Disease: Factors Affecting Epidemiology & Surveillance

- Public health infrastructure
- Large exposed populations - case dilution
- Jurisdictional boundaries
- Laboratory utilization - managed care
- New pathogens and reporting constraints
- Lack of agency communication

(c) 2008, Bela T. Matyas, MD, MPH

Foodborne Diseases: Scope

- Isolated, sporadic cases
- Local, point-source outbreaks
 - Restaurant, caterer, party, “church supper”
- Widespread food item
 - e.g., *E. coli* 0157 in ground beef
- Imported (international supermarket)
 - e.g., cyclospora in raspberries, salmonella in sprouts

(c) 2008, Bela T. Matyas, MD, MPH
57. Transmission of Foodborne Diseases

Transmission of Foodborne Diseases

• Contaminated food
 – Ready-to-eat
 – Under-cooked
• Cross-contamination of food
• Infectious foodhandler with poor hygiene
• Exacerbated by time-temperature abuse

(c) 2008, Bela T. Matyas, MD, MPH

58. Foodborne Disease Agents

Foodborne Disease Agents

• Bacteria
 – May reproduce in food
 – Moderate incubation periods
• Viruses
 – Require host to reproduce
• Toxins
 – Short incubation period; no reproduction
• Parasites
 – Longer incubation periods

(c) 2008, Bela T. Matyas, MD, MPH
59. Non-Foodborne Routes of Disease Transmission

Non-Foodborne Routes of Disease Transmission

Images courtesy of National Environmental Health Assoc.

(c) 2008, Bela T. Matyas, MD, MPH

60. A Foodborne Outbreak of Shigellosis

A Foodborne Outbreak of Shigellosis

(c) 2008, Bela T. Matyas, MD, MPH
61. Notification

Notification

- Jan. 29, 1998 → state notified by local Board of Health
- Multiple persons ill with GI disease
- Stool cultures revealed *Shigella sonnei*
- Common history: Restaurant X

(c) 2008, Bela T. Matyas, MD, MPH

62. Case Ascertainment

Case Ascertainment

- Through self-report or provider report to local Board of Health
- Through positive *S. sonnei* lab cultures
- Through GI case report forms
- Through credit card receipts
- Via interviews with cases
- Through interviews of staff at Restaurant X

(c) 2008, Bela T. Matyas, MD, MPH
Interviews

- 99 customers interviewed
 - 77 identified via self or provider report, including 65 cases (84%)
 - 22 were not self or lab-reported, including 14 cases (64%)

- 16 staff interviewed

Case Definition

- Outbreak case definition:
 - Ate at Restaurant X on 1/22, 1/23 or 1/24
 - Developed diarrhea during the following 5 days and/or lab-confirmed with S. sonnei
65. Outbreak Cases: Patrons

Outbreak Cases: Patrons

♦ 79 customer cases
♦ 23 lab-confirmed *S. sonnei*
♦ 30 separate groups
♦ exposed over 3-day period (1/22-1/24)

(c) 2008, Bela T. Matyas, MD, MPH

66. Outbreak Cases: Staff

Outbreak Cases: Staff

♦ All staff interviewed & required to submit stool
♦ 8 staff cases
♦ 7 lab-confirmed *S. sonnei*
♦ All wait staff (not kitchen staff)

(c) 2008, Bela T. Matyas, MD, MPH
Estimated Attack Rate

- 318 customers ate at Restaurant X over 3-day period
- 318 x 64% estimate → >200 ill

Epidemic Curve

Day of Illness Onset by Day Customers Exposed (n=79)

Number of Cases

Date of Onset

(c) 2008, Bela T. Matyas, MD, MPH

(c) 2008, Bela T. Matyas, MD, MPH
69. Foodborne Disease Outbreak

Foodborne Disease Outbreak

- Point source epidemic
- Restaurant X only common link
- Possible modes of transmission:
 - improper food preparation (contaminated source)
 - cross contamination
 - foodhandler (bare hand) contamination

(c) 2008, Bela T. Matyas, MD, MPH

70. Exposure Assessment

Exposure Assessment

- Case-Control study
- 79 cases, 20 controls
- 41 food items/groups analyzed

(c) 2008, Bela T. Matyas, MD, MPH
Exposure Assessment, cont.

- Potato basil garlic spread
 - OR = 20.7
 - 95% CI = 1.63, 579.5
 - p-value = 0.01
 - definitely consumed by 76/77 (99%)

(c) 2008, Bela T. Matyas, MD, MPH

Exposure Assessment, cont.

- Ice water also significant
 - OR = 6.70
 - p-value = 0.01

- No common wait person

(c) 2008, Bela T. Matyas, MD, MPH
73. Lab Results: Pulsed-Field Gel Electrophoresis

Lab Results: Pulsed-Field Gel Electrophoresis

- 30 customer/staff isolates analyzed
 - Visual: 5 patterns, all \(\leq 3 \) band difference
 - Computer: 3 patterns, \(\leq 1.5\% \) tolerance
- Multiple patterns observed:
 - 2 Cases \(\rightarrow \) 2 specs \(\rightarrow \) 2 patterns
 - 1 Case \(\rightarrow \) 1 spec \(\rightarrow \) 2 patterns

74. Environmental Findings

Environmental Findings

- Potato basil garlic spread
 - Bare hand contact (prep. and service)
 - Inadequate cooling
 - Provided to all tables
 - Stnd plate count = 2,300,000
- Wait staff
 - Reportedly ill prior to customers
 - Worked while ill during 3-day period
Conclusions

- Reminder of significant foodborne outbreak potential of *S. sonnei* (low infectious dose)
- Most probable cause of outbreak: infected worker with poor hygiene → bare hand contact

Policy Implications

- FDA Food Code
 - No bare hand contact with Ready-to-Eat foods permitted
- Shifting pattern of foodborne outbreaks
 - Role of food handler hygiene
78. Giardiasis: Epidemiology

Giardiasis: Epidemiology

- Infectious agent: *Giardia lamblia*
 - Trophozoite (mature)
 - Cyst (infectious)
- Zoonotic infection
 - Mammals a major reservoir
- Human infection
 - Direct: person-to-person
 - Indirect: fecally-contaminated water or food
- 857 cases in Massachusetts in 2003

(c) 2008, Bela T. Matyas, MD, MPH
79. Giardiasis: Epidemiology, cont.

Giardiasis: Epidemiology, cont.

- Outbreaks
 - Contaminated drinking water
 - Recreational water (few)
 - Foodborne (few)
- Individual cases
 - Person-to-person (e.g., day care centers)
- Incubation period: mean 7 d. (range 1–4 wks)
- Communicable as long as excreting cysts
 (up to 1 month)

(c) 2008, Bela T. Matyas, MD, MPH

80. Giardiasis: Clinical

Giardiasis: Clinical

- Broad spectrum of symptoms
 - Watery diarrhea
 - Abdominal pain
 - Foul smelling stool
 - Flatulence
 - Abdominal distention
 - Anorexia
- Asymptomatic infection is common

(c) 2008, Bela T. Matyas, MD, MPH
81. Background: Outbreak

Background: Outbreak

- **September 16, 2003**: First case reported to Milton Board of Health & Massachusetts Department of Public Health
- **September 22, 2003**: 5 more cases reported from same town, onsets Aug. 28–Sept. 4, 2003
- All cases linked to swimming pools at a country club in the town
- Cases continue even 1 month after pools closed for season on Sept. 5, 2003

(c) 2008, Bela T. Matyas, MD, MPH

82. Background: Country Club

Background: Country Club

- Located in Milton
 - Population 26,700
- Privately owned
- 2 outdoor pools (Adult and Kiddy)
 - Separate filtering systems
 - 1 certified pool operator
- Snack bar
- Diaper-changing stations
- Handwashing signs

(c) 2008, Bela T. Matyas, MD, MPH
Water Supply for Milton

- Water supplied by the Massachusetts Water Resources Authority (MWRA):
 - Provides water to 46 cities/towns in Massachusetts
 - All 46 cities and towns receive same water
- No increase in giardiasis reported by these other cities and towns

Objectives of Investigation

- Determine extent of outbreak
- Determine source of outbreak
- Identify risk factors for illness
- Recommend appropriate prevention and control measures
Method: Retrospective Cohort Study

- Questionnaires mailed to member-households of country club
- Swimming pools suspected as result of hypothesis generating interviews

(c) 2008, Bela T. Matyas, MD, MPH

Questionnaire

- Demographics
- Symptoms
- Time spent in kiddy pool or adult pool at club
- Food bought at club
- Diaper changing stations used at club
- Summer camping or hiking
- Children who play with other children or baby-sit for other children

(c) 2008, Bela T. Matyas, MD, MPH
Case Definitions

Person / Place

• Member or guest of the country club

Clinical

• Confirmed Case
 — Laboratory diagnosed (with or without symptoms)

• Probable Case
 — Diarrhea

• Suspect Case
 — Loss of appetite and cramps and gas

(c) 2008, Bela T. Matyas, MD, MPH

Results of Questionnaire

Households sent questionnaires	498
Households returning questionnaires	175
Household response rate	35%
Number of people in responding households	584
Total cases	149
Overall attack rate	149 / 584 (25%)

(c) 2008, Bela T. Matyas, MD, MPH
89. Breakdown of Cases (n = 149)

90. Symptoms of Cases (N = 149)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>92 (62%)</td>
</tr>
<tr>
<td>Foul Smelling Stool</td>
<td>83 (56%)</td>
</tr>
<tr>
<td>Cramps</td>
<td>81 (54%)</td>
</tr>
<tr>
<td>Gas</td>
<td>78 (52%)</td>
</tr>
<tr>
<td>Loss of Appetite</td>
<td>57 (38%)</td>
</tr>
<tr>
<td>Weight loss</td>
<td>39 (26%)</td>
</tr>
<tr>
<td>Fever</td>
<td>30 (20%)</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>31 (21%)</td>
</tr>
</tbody>
</table>
91. Symptoms of Cases (N = 149)

![Bar chart showing symptoms of cases (N = 149)]

92. Duration of Symptoms for Cases (n = 80)

Duration of Symptoms for Cases (n = 80)

- **Median**: 28 days
- **Range**: 1–139 days
- **Interquartile range**: 14–53 days

(c) 2008, Bela T. Matyas, MD, MPH
93. Age and Sex

Age and Sex

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Median</th>
<th>Mean</th>
<th>Range</th>
<th>% Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases n = 125</td>
<td>6</td>
<td>17</td>
<td><1 - 74</td>
<td>50</td>
</tr>
<tr>
<td>Non-cases n = 289</td>
<td>23</td>
<td>27</td>
<td><1 - 87</td>
<td>48</td>
</tr>
</tbody>
</table>

94. Percent Cases by Age Group

Percent Cases by Age Group

- 0–5 years: 50%
- 6–18 years: 17%
- ≥ 19 years: 33%

(c) 2008, Bela T. Matyas, MD, MPH
95. Epidemic Curve (n = 135)

Epidemic Curve (n = 135)

Pools closed for season September 5

May Jun Jul Aug Sept Oct Nov Dec
2003

(c) 2008, Bela T. Matyas, MD, MPH

96. Newspaper Heading

Newspaper Heading

Pool blamed for outbreak of giardia

Golf club official says person responsible will be punished...

(c) 2008, Bela T. Matyas, MD, MPH
97. Epidemiology Program: Outbreak Investigation: Slide 97

Epi Curve: Cases by Week of Illness Onset

(c) 2008, Bela T. Matyas, MD, MPH

98. Further Case Definitions

Further Case Definitions

• Primary case
 — Onset of illness June 1–October 4, 2003 AND
 — No contact with another ill individual during that person's shedding period

• Secondary case
 — Onset of illness on or after October 5, 2003 OR
 — Onset of illness before October 5, but within 60 days of ill contact's onset of illness

(c) 2008, Bela T. Matyas, MD, MPH
99. Rationale for 60-Day Time Frame for Secondary Cases before October 5

(c) 2008, Bela T. Matyas, MD, MPH

100. Cases by Status

(c) 2008, Bela T. Matyas, MD, MPH
101. Epidemic Curve (n = 135)

Epidemic Curve (n = 135)

(c) 2008, Bela T. Matyas, MD, MPH

102. Possible Fecal Shedding

Possible Fecal Shedding

(c) 2008, Bela T. Matyas, MD, MPH
103. Risk Factors for Illness Among Primary Cases (N = 30)

Risk Factors for Illness Among Primary Cases (N = 30)

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Exposed</th>
<th>Not Exposed</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Ill (%)</td>
<td>Total</td>
<td># Ill (%)</td>
</tr>
<tr>
<td>Kiddy Pool</td>
<td>16 (13)</td>
<td>124</td>
<td>14 (4)</td>
</tr>
<tr>
<td>Adult Pool</td>
<td>12 (5)</td>
<td>225</td>
<td>18 (7)</td>
</tr>
<tr>
<td>Child (vs. Adult)</td>
<td>16 (9)</td>
<td>184</td>
<td>14 (5)</td>
</tr>
<tr>
<td>Camp / Hike</td>
<td>1 (4)</td>
<td>28</td>
<td>29 (6)</td>
</tr>
<tr>
<td>Daycare</td>
<td>5 (10)</td>
<td>51</td>
<td>25 (6)</td>
</tr>
</tbody>
</table>

(c) 2008, Bela T. Matyas, MD, MPH

104. Primary Cases (exposure to pools)

Primary Cases (exposure to pools)

(c) 2008, Bela T. Matyas, MD, MPH
105. Stratified Analysis: Kiddy Pool Exposure and Giardiasis by Age Group

<table>
<thead>
<tr>
<th></th>
<th>Kids</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>III</td>
<td></td>
<td>Total</td>
<td>AR%</td>
<td>RR</td>
<td>95% CI</td>
<td>P</td>
</tr>
<tr>
<td>Kiddy Pool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>12</td>
<td></td>
<td>88</td>
<td>13.6</td>
<td>3.3</td>
<td>(1.1, 9.8)</td>
<td>.02</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>4</td>
<td></td>
<td>96</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adults</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kiddy Pool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>4</td>
<td></td>
<td>36</td>
<td>11.1</td>
<td>2.9</td>
<td>(0.95, 6.7)</td>
<td>.06</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>10</td>
<td></td>
<td>259</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR_{Crude}</td>
<td></td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.7, 6.5)</td>
<td></td>
</tr>
<tr>
<td>RR_{MH}</td>
<td></td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.4, 5.9)</td>
<td></td>
</tr>
</tbody>
</table>

(c) 2008, Bela T. Matyas, MD, MPH

106. Stratified Analysis: Age Group and Giardiasis by Kiddy Pool Exposure

<table>
<thead>
<tr>
<th>Kiddy Pool Exposure</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>III</td>
<td></td>
<td>Total</td>
<td>AR%</td>
<td>RR</td>
<td>95% CI</td>
<td>P</td>
</tr>
<tr>
<td>Child</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>12</td>
<td></td>
<td>88</td>
<td>13.6</td>
<td>1.2</td>
<td>(0.4, 3.6)</td>
<td>.7</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>4</td>
<td></td>
<td>36</td>
<td>11.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Kiddy Pool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>4</td>
<td></td>
<td>92</td>
<td>4.2</td>
<td>1.1</td>
<td>(0.4, 3.4)</td>
<td>.9</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>10</td>
<td></td>
<td>259</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR_{Crude}</td>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.7, 6.5)</td>
<td></td>
</tr>
<tr>
<td>RR_{MH}</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.5, 2.5)</td>
<td></td>
</tr>
</tbody>
</table>

(c) 2008, Bela T. Matyas, MD, MPH
107. Dose Response

Dose Response

<table>
<thead>
<tr>
<th>Kiddy Pool Use</th>
<th># Ill (%)</th>
<th>Total</th>
<th>RR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12 (3.6)</td>
<td>333</td>
<td>1.0 (Ref.)</td>
<td></td>
</tr>
<tr>
<td><1 x/ week</td>
<td>5 (10)</td>
<td>50</td>
<td>2.8</td>
<td>(1.0, 7.5)</td>
</tr>
<tr>
<td>1-3 x/ week</td>
<td>7 (12.3)</td>
<td>57</td>
<td>3.4</td>
<td>(1.4, 8.3)</td>
</tr>
<tr>
<td>≥ 4x/ week</td>
<td>4 (22.2)</td>
<td>18</td>
<td>5.1</td>
<td>(1.8, 14.4)</td>
</tr>
</tbody>
</table>

Mantel Haenszel test for trend

P < .0001

(c) 2008, Bela T. Matyas, MD, MPH

108. Household-Level Risk Factors

Household-Level Risk Factors

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Exposed</th>
<th>Not Exposed</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary Case</td>
<td>Primary Case</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Households (%)</td>
<td>Households (%)</td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td>12 (23)</td>
<td>18 (17)</td>
<td>1.3 (0.7, 2.5)</td>
</tr>
<tr>
<td>Changing Station</td>
<td>6 (32)</td>
<td>24 (18)</td>
<td>1.8 (0.8, 3.8)</td>
</tr>
</tbody>
</table>

(c) 2008, Bela T. Matyas, MD, MPH
109. Recommendations

Recommendations

- Club should review all protocols for pool maintenance and response to fecal accidents

- Members of the community should be vigilant in making sure that family members wash their hands properly
 - Handwashing educational campaign
 - Attention to families with children

110. Follow-Up

Follow-Up

- Club hired private firm (March 2004) to evaluate its pools
 - Incorrect chemicals being used
 - Inadequate care in monitoring the pools
 - Equipment not up to standard
 - Insufficiencies affected water quality

- Club purchased new equipment, re-wrote protocols

- Three fecal accidents during Summer 2004
 - LBH notified each time
 - Pools temporarily closed
111. Confirmed Cases of Giardia, Milton, 1999-2004

![Confirmed Cases of Giardia, Milton, 1999–2004](image)

(c) 2008, Bela T. Matyas, MD, MPH

112. Conclusions

Conclusions

- Large community outbreak of giardiasis
- Kiddy pool risk factor for primary cases
- Person-to-person spread accounted for the majority of cases

(c) 2008, Bela T. Matyas, MD, MPH
A Foodborne Outbreak of Hepatitis A

Notification

- Late Feb. 2004, MDPH notified by local health dept. of several cases of hepatitis A in residents of the town; onsets in Feb.
- Initial interviews implicated a specific restaurant
- 5 additional cases of hepatitis A reported the following week
Initial Investigation

• Is this an outbreak of hepatitis A?

— Statewide have 100-200 cases reported annually
— Possible common link reported by cases
Initial Investigation

- Is this an outbreak of hepatitis A?
 - Statewide have 100-200 cases reported annually
 - Possible common link reported by cases
- Is the diagnosis confirmed?

(c) 2008, Bela T. Matyas, MD, MPH

Initial Investigation

- Is this an outbreak of hepatitis A?
 - Statewide have 100-200 cases reported annually
 - Possible common link reported by cases
- Is the diagnosis confirmed?
 - Hepatitis A diagnosed by serology: IgM + in the presence of compatible symptoms
 - Results reported by laboratories

(c) 2008, Bela T. Matyas, MD, MPH
Initial Investigation, cont.

• Case ascertainment
 – How can additional cases be identified?
 • Case reports of hepatitis A
 • Laboratory reports of hepatitis A
 • Contact local health departments in area
 – 33 cases identified
 • 24 in the town
 • 9 in neighboring towns
121. Initial Investigation, cont.

Initial Investigation, cont.

• Case interviews
 – What questions should be asked?

122. Initial Investigation, cont.

Initial Investigation, cont.

• Case interviews
 – What questions should be asked?
 • Date of onset of symptoms?
 • Symptoms?
 • Where did you eat during the incubation period (2 weeks-2 months pre-onset)?
 • What were your food preferences during the incubation period (same period)?
 • Occupation?
Initial Investigation, cont.

- Case interviews yielded the following:
 - Onsets: 2/12 – 3/10
 - Age range 18-76 years
 - Gender: 21 male, 12 female
 - 24 cases from same town
 - 9 cases from neighboring towns
 - Multiple restaurants and grocery stores named, many more than once

(c) 2008, Bela T. Matyas, MD, MPH

Hepatitis A Cases Associated with Marshfield Outbreak February-March 2004

(c) 2008, Bela T. Matyas, MD, MPH
Initial Investigation, cont.

• What do the epi curve and onset dates tell us about the likely time period of exposure?
 – Hint: incubation period for hepatitis A is 15-50 days
• Can all of the cases potentially be linked to a common exposure in time?
• What does the shape of the epi curve tell us?

(c) 2008, Bela T. Matyas, MD, MPH

Initial Investigation, cont.

• How might these cases be linked?
Initial Investigation, cont.

- How might these cases be linked?
 - Common restaurant exposure
 - Common food exposure
 - ? secondary spread
- How can we assess this possible link?

(c) 2008, Bela T. Matyas, MD, MPH
Initial Investigation, cont.

• How might these cases be linked?
 – Common restaurant exposure
 – Common food exposure
 – ? secondary spread

• How can we assess this possible link?
 – Analytical study: query for common source and/or common food
 – Food distribution pattern vs. case pattern

• Why not just go with initial case interviews?
 – Possible biases; popular restaurant; etc.

(c) 2008, Bela T. Matyas, MD, MPH

Initial Investigation, cont.

• What is our hypothesis?

(c) 2008, Bela T. Matyas, MD, MPH
131. Initial Investigation, cont.

Initial Investigation, cont.

- What is our hypothesis?
 - The hepatitis A outbreak was caused by exposure to a common source, namely, a restaurant
- Is this hypothesis reasonable?
- Is this hypothesis testable?

(c) 2008, Bela T. Matyas, MD, MPH

132. Analytical Investigation

Analytical Investigation

- What type of analytical study is appropriate for this setting?
 - Case-Control?
 - If so, how would controls be identified?
 - Would controls be matched or unmatched?
 - If matched, for what criteria?
 - Cohort?
 - If so, how would cohorts be identified?
- Note: value of outliers (non-town residents)

(c) 2008, Bela T. Matyas, MD, MPH
Analytical Investigation, cont.

- For Case-Control study:
 - Interviewed 19 cases
 - Interviewed 36 matched controls
 - Assessed exposure to 9 restaurants and to multiple food items
 - Conducted telephone interviews
 - Potential for recall bias
 - Assessed using Odds Ratios and 95% Confidence Intervals

(c) 2008, Bela T. Matyas, MD, MPH

Analytical Investigation, cont.

- What is an Odds Ratio?
- How is an Odds Ratio interpreted?
- What is a 95% Confidence Interval?
- How is an Odds Ratio calculated?
Analytical Investigation, cont.

• Restaurant 1:
 − OR = 0.94; 95%CI = 0.16-5.67
• Restaurant 2:
 − OR = 0.28; 95%CI = 0.07-1.15
• Restaurant 3:
 − OR = 2.42; 95%CI = 0.65-9.01
• Restaurant 4:
 − OR = 74.57; 95%CI = 8.46-657.25
• Restaurant 5:
 − OR = 1.14; 95%CI = 0.34-3.81

(c) 2008, Bela T. Matyas, MD, MPH

Analytical Investigation, cont.

• Restaurant 6:
 − OR = 2.0; 95%CI = 0.63-6.35
• Restaurant 7:
 − OR = 3.46; 95%CI = 1.07-11.17
• Restaurant 8:
 − OR = 3.58; 95%CI = 0.86-14.82
• Restaurant 9:
 − OR = 0.78; 95%CI = 0.17-3.43

(c) 2008, Bela T. Matyas, MD, MPH
137. Restaurant 4 Odds Ratio

Restaurant 4 Odds Ratio

<table>
<thead>
<tr>
<th>EXPOSURE</th>
<th>CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(c) 2008, Bela T. Matyas, MD, MPH

138. Restaurant 4 Odds Ratio

Restaurant 4 Odds Ratio

<table>
<thead>
<tr>
<th>EXPOSURE</th>
<th>CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

(c) 2008, Bela T. Matyas, MD, MPH
Restaurant 4 Odds Ratio

<table>
<thead>
<tr>
<th></th>
<th>CASE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>18</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>36</td>
</tr>
</tbody>
</table>

(c) 2008, Bela T. Matyas, MD, MPH
141. Restaurant 4 Odds Ratio

Restaurant 4 Odds Ratio

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Exposure</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>36</td>
</tr>
</tbody>
</table>

142. Restaurant 4 Odds Ratio

OR = (18 \times 29)/(7 \times 1) = 74.57
143. Further Investigation

Further Investigation

• What do these data mean?

144. Further Investigation

Further Investigation

• What do these data mean?
 – Restaurant 4 is statistically significantly associated with the hepatitis A outbreak
• Who is at risk?
Further Investigation

What do these data mean?
- Restaurant 4 is statistically significantly associated with the hepatitis A outbreak

Who is at risk?
- Patrons of restaurant 4, at least those who ate sometime during January
- Foodhandlers at restaurant 4
- Contacts of cases

Further Investigation, cont.

What’s next?
Further Investigation, cont.

- What’s next?
 - Inspection of restaurant 4, looking for violations and risk factors
 - Interviews of staff
 - Implementation of prevention and control measures

Further Investigation, cont.

- Inspection identified some violations
- Staff interviews:
 - Staff denied having had symptoms in January
 - Risk factors for hepatitis A include diarrhea, bare hand contact with ready-to-eat foods, poor hygiene
Control & Prevention

- Immune globulin (Ig) for staff
- Correction of violations
- Exclusion of infectious staff, if any (i.e., monitor staff for symptoms)
- Ig for contacts of all cases
- If any case is a foodhandler, consider patron Ig

(c) 2008, Bela T. Matyas, MD, MPH
Tularemia

Tularemia

• Bacterial zoonosis
• Caused by *Francisella tularensis*
 — Small, Gram-negative coccobacillus
• Maintained and amplified in nature
 — Vertebrate reservoirs
 — Arthropod vectors
• 100-200 cases annually in the U.S.
153. Tularemia on Martha’s Vineyard

Tularemia on Martha’s Vineyard

- Only previous pneumonic outbreak in the U.S., 1978
 - 7 patients from 1 cottage
 - Uncertain exposure source
- On average, 0 or 1 case reported annually

(c) 2008, Bela T. Matyas, MD, MPH

154. Recognition of the Outbreak, July 2000

Recognition of the Outbreak, July 2000

- 5 cases of pneumonic tularemia
- All residents of or visitors to Martha’s Vineyard (MV)
- 3 used a lawn mower or brush-cutter prior to onset
- Could mowing or brush-cutting aerosolize F. tularensis?

(c) 2008, Bela T. Matyas, MD, MPH
155. Methods

Methods

• Case finding
 – MV, Cape Cod, Nantucket Island
• Active surveillance
• Case-control study
• Environmental investigation

(c) 2008, Bela T. Matyas, MD, MPH

156. Case Definition

Case Definition

• MV resident or visitor, ≥ 18 yrs old
• Primary pneumonic presentation
• Onset between May 1 and October 31, 2000
• One of the following
 – Four-fold rise in titer
 – A single titer $\geq 1:128$
 – Positive culture
 – Positive DFA test

(c) 2008, Bela T. Matyas, MD, MPH
Case-Control Study – Methods

- Random-digit-dialing to enroll controls
 - MV residents, ≥ 18 yrs old
 - ≥ 15 days on MV since May 15

- Questionnaire
 - Since May 15
 - 2 week period
 - Prior to onset for cases
 - Prior to interview for controls

(c) 2008, Bela T. Matyas, MD, MPH

Environmental Investigation

- Possible exposure sites
 - Collected environmental samples
 - Re-created possible exposure activities
- 1978 outbreak site

(c) 2008, Bela T. Matyas, MD, MPH
Results

• 10 patients met the case definition
 – All male
 – Median age: 43 yrs (range: 23-59 yrs)
 – 1 fatality in a 43 yr old previously healthy male; *F. tularensis* type A isolated
• No cases identified on Nantucket or Cape Cod

Pneumonic Tularemia, By Week of Illness Onset – Martha’s Vineyard, 2000
Characteristics of Cases and Controls, MV, 2000

MV, 2000

<table>
<thead>
<tr>
<th>Potential Risk Factor</th>
<th>Cases (N=10)</th>
<th>Controls (N=99)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscaper</td>
<td>5 (50)</td>
<td>3 (3)</td>
<td>32.0 (4.6, 257.2)</td>
</tr>
<tr>
<td>Lawnmower or brush-cutter (2 weeks)</td>
<td>8 (80)</td>
<td>30 (30)</td>
<td>9.2 (1.6, 68.0)</td>
</tr>
<tr>
<td>Lawnmower or brush-cutter (summer)</td>
<td>10 (100)</td>
<td>48 (48)</td>
<td>Undefined</td>
</tr>
<tr>
<td>Mowed over rabbit (2 weeks)</td>
<td>1 (10)</td>
<td>0 (0)</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Characteristics of Cases and Controls, MV, 2000, cont.

MV, 2000, cont.

<table>
<thead>
<tr>
<th>Potential Risk Factor</th>
<th>Cases (N=10)</th>
<th>Controls (N=99)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worked with bark (2 weeks)</td>
<td>3 (30)</td>
<td>5 (5)</td>
<td>8.1 (1.2, 53.7)</td>
</tr>
<tr>
<td>Worked with weed whacker (summer)</td>
<td>7 (70)</td>
<td>27 (27)</td>
<td>6.2 (1.3, 33.6)</td>
</tr>
<tr>
<td>Worked with lumber (summer)</td>
<td>7 (70)</td>
<td>29 (29)</td>
<td>5.6 (1.2, 30.3)</td>
</tr>
</tbody>
</table>

(c) 2008, Bela T. Matyas, MD, MPH
163. Time Spent Outdoors - Martha’s Vineyard, 2000

Time Spent Outdoors
Martha’s Vineyard, 2000

Daily hours outside	Mean	p-value
Cases | 8.4 |
Controls | 5.2 | 0.01

(c) 2008, Bela T. Matyas, MD, MPH

164. Logistic Regression

Logistic Regression

<table>
<thead>
<tr>
<th>Potential Risk Factor</th>
<th>AOR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used lawnmower or brush-cutter</td>
<td>6.7</td>
<td>(1.1, 39.9)</td>
<td>0.04</td>
</tr>
<tr>
<td>Worked with bark</td>
<td>5.1</td>
<td>(0.7, 39.8)</td>
<td>0.12</td>
</tr>
<tr>
<td>Average hours outside</td>
<td>1.1</td>
<td>(0.8, 1.4)</td>
<td>0.59</td>
</tr>
<tr>
<td>Smoked in last 2 wks</td>
<td>3.0</td>
<td>(0.6, 14.7)</td>
<td>0.18</td>
</tr>
<tr>
<td>Dog at MV residence</td>
<td>2.4</td>
<td>(0.4, 14.4)</td>
<td>0.33</td>
</tr>
</tbody>
</table>

(c) 2008, Bela T. Matyas, MD, MPH
Environmental Results

40 animals trapped
• 2 seropositive
 – 1 striped skunk (*Mephitis mephitis*)
 – 1 Norway rat (*Rattus norvegicus*)
• All culture negative
• All DFA negative

Environmental Results

• Culture negative:
 – Lawn mower filters
 – Grass clippings
 – Air
 – Water
 – Soil samples

(c) 2008, Bela T. Matyas, MD, MPH
Conclusions

- Second U.S. outbreak of pneumonic tularemia
- First time mowing and brush-cutting are risk factors
- 30% of MV residents cut or mowed in last 2 weeks; 48% cut or mowed since May 15
- Ecologic determinants of transmission remain unknown

Limitations

- Small number of cases
- Possible recall bias
- Using “last 2 weeks” as exposure proxy
- Controls not tested serologically
- Might not have accurately re-created exposure conditions
Recommendations

- Persons who brush-cut or mow in endemic areas should be made aware of risk
- Health-care providers should be aware of this possible mode of transmission
- Where possible, exposures to aerosols while landscaping should be minimized
- Active surveillance for tularemia should be continued

Challenges in Recognizing a Bioterrorist Attack

- Delayed onset - hours to weeks
- Early signs/symptoms nonspecific
- Physicians/laboratorians not familiar with rare diseases/organisms
- Current public health surveillance may not be adequate for early detection
171. Some Indicators of Bioterrorism Events

Some Indicators of Bioterrorism Events

- Point-source exposure pattern
- Compressed epidemic curve
- Geographic correlates of exposure
- High attack rate among exposed
- “Exotic” disease for area
- Low attack rates in “protected” areas
- Animals also acquiring disease

(c) 2008, Bela T. Matyas, MD, MPH

172. Public Health Bioterrorism Surveillance Plan

Public Health Bioterrorism Surveillance Plan

- Enhanced traditional surveillance for all potential BT agents and unusual illnesses
- Novel surveillance methods:
 - Hospital diversion data
 - Medical examiner data
 - Syndrome-based ER/ICU admissions
 - School absences
 - Animal disease surveillance

(c) 2008, Bela T. Matyas, MD, MPH
Early Detection of a BT Event: Finding a Zebra Among Horses

- Early detection and control of bioterrorism will depend on alert clinicians reporting unusual illnesses or patterns of illness to Public Health
 - BEFORE definitive diagnosis
- “When you hear hoof beats, think “zebras” (as well as horses)

(c) 2008, Bela T. Matyas, MD, MPH

Salmonellosis in Oregon, 1984

- Recognition: Over a two week period, hundreds of persons in The Dalles, a small town of 10,000 people, developed salmonellosis
- Detailed investigation at 4 of 10 affected restaurants implicated:
 - Rest A - macaroni and 3 bean salad; blue cheese dressing
 - Rest B - lettuce
 - Rest C - lettuce
 - Rest D - potato salad

(c) 2008, Bela T. Matyas, MD, MPH
Salmonellosis in Oregon, cont.

- Traceback of foods: no suppliers in common to all
- Interviews with all the food workers in affected restaurants
 - No preceding illness, no links
 - Their illness was associated with eating from salad bars
- Reviewed with law enforcement - they did not see a crime

(c) 2008, Bela T. Matyas, MD, MPH

Salmonellosis in Oregon, cont.

- In June 1985, a nearby commune of 3000 collapsed
- Run by Baghwan Shree Rajneesh (“live, love, laugh”)
- Investigation by State Health Department and FBI found a clinical lab at the commune, with QC strain of *Salmonella* that exactly matched the outbreak strain

(c) 2008, Bela T. Matyas, MD, MPH
Salmonellosis in Oregon, cont.

- Clinical microbiologist at commune confessed to poisoning the salad bars; served approximately 4 years
- Were planning to infect the town on election day, so commune could take over the entire county
- Stymied by closure of salad bars