1. Respiratory System I: Slide 1

Respiratory System
Part 1
Basic Human Pathology II, 2008

Lynn W. Solomon, DDS, MS
Assistant Professor
Department of Oral and Maxillofacial Pathology
Tufts University School of Dental Medicine

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

2. Respiratory System Diseases

Respiratory System Diseases

Part 1
- Respiratory failure / chronic hypoxemia
- Atelectasis
- Vascular and Hemodynamic Diseases
- Infective disease
- Infective / obstructive disease
- Chronic obstructive disease

Part 2
- Restrictive Pulmonary Disease
- Neoplastic Disease in Lungs
- Pathology of the Pleura
- Lung Disease in Children

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
3. Respiratory System

Respiratory System

- Introduction
 - Upper respiratory tract
 - Airways
 - Lungs
 - Main disease causes
 - Infection / inflammation
 - Exposure to environmental agents (e.g., smoke, dust)
 - Carcinoma

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

4. Bronchi and Bronchioles

Bronchi and Bronchioles

- Bronchi and bronchioles can be separated histologically by the absence of cartilage in bronchioles

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
5. Normal Distal Lung Acinus

Normal Distal Lung Acinus

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

6. Normal Microscopic Structure of the Alveolar Wall

Normal Microscopic Structure of the Alveolar Wall

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
7. Normal Lung – Cut Surface

Normal Lung – Cut Surface

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

8. Normal Alveoli

Normal Alveoli

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
9. **Respiratory System**

Respiratory System

- **Normal**
 - Blood gases within physiological limits
 - Normal PaO₂ is between 10.7 kPa – 3.3 kPa (80-100 mmHg)
 - Normal PaCO₂ is between 5.7 kPa – 6.0 kPa (35-45 mmHg)
- **Respiratory failure**
 - When PaO₂ falls below 8 kPa (60 mmHg)
 - Types of respiratory failure:
 - Type 1
 - PaO₂ is low but PaCO₂ is within normal range
 - Type 2
 - PaO₂ is low AND PaCO₂ is raised (above 6.7 kPa = 50 mmHg)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

10. **Respiratory System**

Respiratory System

- **Respiratory failure - cont’d**
 - Blood gas analysis
 - **Central cyanosis** (PaO₂ less than 6.7 kPa with normal hemoglobin level)
 - **Low PaO₂ alone** means a mismatch between ventilation and perfusion but alveolar ventilation is normal
 - **Hypoxia** (inadequate oxygenation of blood in lung) seen in pulmonary collapse and lung consolidation
 - **Hypoxemia** without hypercapnia because of failure of diffusion of gas due to thickening of alveolar septa

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
11. Respiratory System

Respiratory System

- **Causes of respiratory failure**
 - Failure of ventilatory drive
 - e.g. depression of respiratory center
 - Upper airway obstruction
 - Diseases of the lung
 - preventing normal gas exchange
 - Mechanical impairment of ventilation
 - e.g. massive rib fracture, diseases of muscle

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

12. Respiratory System

Respiratory System

- **Consequences of chronic hypoxemia:**
 - **Pulmonary hypertension**
 - Pulmonary vasoconstriction \rightarrow increased pulmonary artery pressure and increased work of the right ventricle \rightarrow right ventricular hypertrophy
 - Over time, pulmonary arteries develop intimal proliferation and occlusion of lumina
 - **Polycythemia**
 - Due to stimulation of erythropoietin released from the kidney
 - \rightarrow increased blood viscosity and increased risk of thrombosis

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
13. Atelectasis

Atelectasis

- “Collapse of the lung”
- Causes
 - Obstruction of the airway with resorption of air from the lungs distal to the obstruction
 - Compression of the lung when fluid or air accumulates in the pleural cavity
 - Scarring in the lung may cause contraction of parenchyma and collapse
 - Loss of normal surfactant from terminal air spaces leads to generalized failure of lung expansion (i.e., microatelectasis)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

14. Atelectasis

Atelectasis

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
15. Vascular and Hemodynamic Diseases of the Lung

Vascular and Hemodynamic Diseases of the Lung

- **Pulmonary edema**
 - Due to an increase of fluid in alveolar wall (interstitium)
 - **Main cause is failure of the left ventricle** -> increased hydrostatic pressure in the alveolar capillaries and increased alveolar capillary permeability -> fluid into pulmonary interstitium -> increase fluid flow into pulmonary lymphatics -> increased stiffness of lungs -> subjective dyspnea
 - May remain stable for a long time

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

16. Vascular and Hemodynamic Diseases of the Lung

Vascular and Hemodynamic Diseases of the Lung

- **Pulmonary edema – cont’d**
 - In severe left ventricular failure, then fluid also leaks into alveolar spaces -> severe acute impairment of respiratory function
 - **Capillary rupture** -> leakage of RBCs into interstitium and alveoli -> hemoglobin phagocytized by macrophages that thus gather iron pigment (aka heart failure cells)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
17. **Pulmonary Edema and Heart Failure Cells**

 - **Pulmonary Edema and Heart Failure Cells**
 - Tense, shiny external surface
 - Alveolar spaces contain macrophages with brown hemosiderin content

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

18. **Vascular and Hemodynamic Diseases of the Lung**

 - **Vascular and Hemodynamic Diseases of the Lung**
 - **Pulmonary hypertension**
 - Increased pulmonary arterial pressure -> irreversible structural changes in pulmonary arteries -> increased work of right side of heart and right heart failure (cor pulmonale)
 - Most important causes of pulmonary hypertension
 - Chronic obstructive pulmonary disease (COPD)
 - Fibrosis of the lungs
 - Chronic pulmonary venous congestion
 - Increased pulmonary blood flow
 - Increased blood viscosity

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
19. Vascular and Hemodynamic Diseases of the Lung

Vascular and Hemodynamic Diseases of the Lung

- Pulmonary hypertension - cont’d
 - Structural changes:
 - Long-standing cases
 - Medial hypertrophy in muscular arteries (increase of smooth muscle) and pulmonary veins (i.e., arterialization)
 - Severe long-standing cases
 - Pulmonary arterial wall produces calcified atherosclerotic plaques in the main pulmonary arteries (e.g., untreated patent ductus arteriosus)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

20. Pulmonary Hypertension Morphologic Changes

Pulmonary Hypertension Morphologic Changes

Images not available due to copyright restrictions

A = normal pulmonary muscular artery with internal elastic lamina (IEL) and external (EEL)
B = intimal hyperplasia (arrow) and medial hypertrophy (mild to moderate hypertension)
C = advanced pulmonary hypertension with plexiform lesion (aneurysmal disruption of wall [arrow] with secondary thrombus and recanalization)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
21. Vascular and Hemodynamic Diseases of the Lung

Vascular and Hemodynamic Diseases of the Lung

- Pulmonary hypertension – cont’d
 - Net result
 - Occlusion of lumen of pulmonary arteries with prominent heart failure cells
 - Fibrosis of the lung’s interstitium
 - Net clinical effects
 - Breathlessness
 - Development of right-sided cardiac failure

22. Vascular and Hemodynamic Diseases of the Lung

Vascular and Hemodynamic Diseases of the Lung

- Pulmonary embolism
 - Most arise as thrombi in deep leg veins and pass in the venous circulation to right side of heart – → lodge in pulmonary arteries
 - Pulmonary infarction
 - Hemorrhagic or ‘red’ infarcts
 - Only about 10% of all emboli result in infarction, because the dual blood circulation to the lungs protects against ischemic necrosis
 - Clinical consequences - variable
 - Asymptomatic
 - Massive coiled pulmonary embolus is impacted in a main pulmonary artery then – → acute right heart failure and death
23. Emolus

Emolus

- Large saddle embolus (arrow) from the femoral vein lying astride the main left and right pulmonary arteries

Image not available due to copyright restrictions

24. Vascular and Hemodynamic Diseases of the Lung

Vascular and Hemodynamic Diseases of the Lung

- Pulmonary embolism
 - Occurs in clinical settings marked by venous stasis (primary venous disease, congestive heart failure, prolonged bed rest or immobilization, and prolonged sitting while traveling)
 - Rarely due to nonthrombotic particulate material
 - Predisposed by
 - cancer - embolization of clumps of tumor cells
 - fractures - fat, bone marrow emboli
 - childbirth - amniotic fluid embolism
 - foreign material such as bullet fragments

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
25. Vascular and Hemodynamic Diseases of the Lung

Vascular and Hemodynamic Diseases of the Lung

- **Pulmonary infarction**
 - Gross
 - Hemorrhagic infarcts because of blood entering from the bronchial circulation
 - Wedge-shaped infarcts with associated pleurisy (chest pain)
 - Infarcts → over time → fibrous scar
 - Microscopic
 - Thromboembolism → extravascular blood in a necrotic lung (causes clinical hemoptysis)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

26. Pulmonary Infarction

Pulmonary Infarction

\[a = \text{Hemorrhagic wedge-shaped infarct with pleurisy (P)} \]
\[b = \text{Infarct caused by thromboembolism (E) has extravasation of blood into necrotic lung (N)} \]

Images not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
27. Hemorrhagic Pulmonary Infarct

Hemorrhagic Pulmonary Infarct

- Small, recent, hemorrhagic pulmonary infarct (roughly wedge-shaped)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

28. Red Infarcts Due to Thromboembolism

Red Infarcts Due to Thromboembolism

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
29. Pulmonary Infarction

Pulmonary Infarction
due to thromboembolus

30. Vascular and Hemodynamic Diseases of the Lung

Vascular and Hemodynamic Diseases of the Lung

- Pulmonary vasculitis (angiitis)
 - Cellular infiltration of pulmonary blood vessels leading to necrosis of pulmonary parenchyma
- Examples:
 - necrotizing vasculitis
 - Wegener's granulomatosis (nose, lung, kidney)
 - Churg-Strauss syndrome (eosinophils infiltrate lung)
31. Vascular and Hemodynamic Diseases of the Lung

Vascular and Hemodynamic Diseases of the Lung

❖ Review of key facts
 - Pulmonary edema is most commonly caused by left ventricular failure
 - Pulmonary hypertension causes right-sided heart failure
 - Pulmonary thromboembolism is most commonly from deep leg vein thrombosis
 - Large pulmonary emboli cause acute right heart failure and death

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

32. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

• Upper respiratory tract infections are common in western world
 - Nose, pharynx, trachea, bronchi
 - Most minor and transient
• Lower respiratory tract infections are serious cause of morbidity and mortality
 - Bronchus to alveoli

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
33. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

- Infection of bronchi and bronchioles
 - Extremely common
 - Most due to self-limiting viral diseases
 - Examples:
 - influenza - tracheobronchitis with necrosis of lining epithelium
 - respiratory syncytial virus - bronchiolitis in the very young
 - adenovirus and measles virus - severe inflammation of bronchioles
 - fibrosis - permanent oblitative bronchiolitis

- Bacterial diseases - common
 - Precedes development of bronchopneumonia
 - Example:
 - bordetella pertussis (whooping cough) associated with bronchial and bronchiolar inflammation

34. Acute Bronchitis

Acute Bronchitis

- Gross appearance
 - Airway mucosa is red and edematous
 - Overlying mucoid purulent exudate
 - Rarely, destruction and scarring of airways can occur

* Restricted use PEIR: University of Alabama at Birmingham, Department of Pathology

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
35. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

- Pneumonia
 - Infective inflammation and consolidation of the lung
 - One of the most common infective conditions
 - 5th most common cause of death in U.S.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

36. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

- Pneumonia - cont’d
 - Classification
 - Pathological - how it spreads
 - Bronchopneumonia
 - Lobar pneumonia
 - Microbiological - what caused it
 - Cause of organism
 - Clinical - circumstances of development
 - Community-acquired
 - Hospital-acquired (nosocomial)
 - Acquired in special environments
 - Immunosuppressed patients
 - Aspiration pneumonia

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
37. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

- **Bronchopneumonia**
 - Acute bacterial pneumonia centered on bronchi that spreads --> adjacent alveoli --> filled with acute inflammatory exudate --> affected areas consolidated (first patchy within lung lobules, then if not treated, confluent (lobes))
 - Causative organism depends on circumstances predisposing to infection
 - Staph. aureus, Haemophilus, Klebsiella, and Strep. pyogenes
 - Gross
 - Affected lung is firm, airless, dark red or gray appearance
 - Pus may be present in the peripheral bronchi

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

38. Bronchopneumonia

Bronchopneumonia

- Bronchopneumonia – cut surface shows pale areas in lower lobe = consolidation

Restricted use, FEIR; University of Alabama at Birmingham, Department of Pathology

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
39. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

- Bronchopneumonia - cont’d
 - Histology
 - Acute inflammation of the bronchi; alveoli contain acute inflammatory exudate
 - Pleura often involved → pleurisy
 - If treated, then focal organization of lung by fibrosis
 - Common complications
 - Lung abscess
 - Pleural infection (pleurisy – pleuritis) – patchy white fibrinous exudate
 - Septicemia

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

40. Bronchopneumonia

Bronchopneumonia

- Bronchopneumonia – cont’d
 - Inflammation centered on bronchi (B) spreads to alveoli (A)
 - Consolidation occurs in dependent parts of the lung

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
41. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

- Lobar pneumonia
 - Acute bacterial pneumonia
 - Occurs when microorganisms widely colonize distal alveolar air spaces rather than bronchi
 - Rapid spread through alveolar spaces and bronchioles causes acute inflammatory exudate into air spaces
 - Especially *Strep. pneumoniae* (Pneumococcus) or *Klebsiella*
 - Gross
 - Entire lobe consolidated and airless
 - Histology
 - Alveoli filled with acute inflammatory exudate which is limited by pulmonary fissures

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

42. Lobar Pneumonia

Lobar Pneumonia

Images not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
43. Lobar Pneumonia

- **Lobar pneumonia - cont’d**
 - The whole lobe is rapidly consolidated
 - Alveoli are filled with acute inflammatory exudate (E) limited by pulmonary fissures (F)

44. Infective Disease of the Respiratory System

- **Lobar pneumonia – cont’d**
 - Adults - vagrants and alcoholics; poor social and medical care
 - Usually severely ill with associated bacteremia
 - If not treated, (pre-antibiotic era) then 4 phases:
 - (1) Consolidation, (2) red hepatization (fibrinopurulent exudate and RBC), (3) gray hepatization (fibrinopurulent exudate), and (4) resolution
 - Prompt treatment:
 - Many recover with lungs returning to normal structure and function by resolution
 - In others - exudate in alveoli organizes - - -> scarring and permanent dysfunction
 - Common complications
 - Pleurisy, lung abscess, septicemia

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
45. Lobar Pneumonia

Lobar Pneumonia

- Lobar pneumonia with gray hepatization; lower lobe uniformly consolidated

46. Anatomic Distribution Comparison

Anatomic Distribution Comparison

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Infective Disease of the Respiratory System

Community-acquired pneumonia

- Usually caused by gram-positive bacteria
 - *Streptococcus pneumoniae* - most common (~33% of cases)
 - *Haemophilus influenzae* - in children / > 60 years old / chronic obstructive disease
 - *Legionella* - (5% of cases) middle aged adults with 10% mortality
 - *Mycoplasma pneumoniae* - atypical pneumonia; about 10% of cases in persons between ages 20-60
 - *Chlamydia pneumoniae* - neonates and working adults
 - *Mycobacterium tuberculosis* - socially deprived with poor medical care

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

Infective Disease of the Respiratory System

Community-acquired pneumonia- cont’d

- Gram-negative cases < 1%
 - *Klebsiella pneumoniae* - lobar patterns; debilitated, poor nourished
- Viral pneumonia - ~ 10%
 - Often bacterial superinfection
 - *Staphylococcus aureus* may cause a very severe pneumonia following viral infection - - - > lung abscesses
- 30% no cause identified
- If bacteremia exists then ~ 25% die

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
49. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

- **Hospital-acquired pneumonia (nosocomial)**
 - Mainly caused by gram-negative bacteria endotoxins
 - 60% - *Klebsiella, E. coli, Pseudomonas, Proteus, Serratia*
 - Community-acquired organisms can rarely also be involved
 - *Pneumococcus* ~ 5%
 - *Legionella* - air conditioning filters or water supplies

- **Diagnosis**
 - Bronchial lavage better due to contaminated expectorated sputum of the oropharynx

- **Infection occurs two days or more after hospitalization**
 - Incidence is ~ 5% of those admitted esp. if predisposed with old age, serious illness, cigarette smoking, decreased lung defenses (anesthesia, reduced consciousness), and mechanical ventilation in critical care units

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

50. Pseudomonas Pneumonia (nosocomial)

Pseudomonas Pneumonia (nosocomial)

Images not available due to copyright restrictions

- Extensive destruction of pulmonary parenchyma (arrowhead) with full-thickness fibrinoid necrosis of the arterial wall (arrow)
- Abundant bacteria (blue) invading the blood vessel wall adjacent to the lumen (asterisk)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
51. Infective Disease of the Respiratory System

Infected Disease of the Respiratory System

• Aspiration pneumonia
 – Usually due to regurgitation during episodes of unconsciousness, also due to impaired swallowing due to neuromuscular disease (e.g., stroke, motor neuron disease)
 – Typical organisms involved
 • *Fusobacterium, Bacteroides* – anaerobes
 • *Staphylococcus* and gram-negative – common in hospitals
 – Common complication
 • Lung abscess
 – Gastric acid – → chemical pneumonia – → ARDS
 • Increasing respiratory dysfunction
 • Opacification of the lungs
 • Food material excites a foreign body histiocytic response in the lung

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

52. Aspiration Pneumonia

Aspiration Pneumonia

Multinucleated giant cells engulf aspirated foreign material

Images not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
53. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

- **Atypical pneumonia (acute interstitial)**
 - Inflammation of alveolar septa by chronic inflammation—diffuse and patchy
 - Unlike lobar and bronchopneumonia patterns in which air spaces have inflammatory exudate
 - Causes
 - Several viruses, *Chlamydia, Rickettsia*
 - *Mycoplasma pneumoniae*—most common form; children and young adults
 - Fever, dry cough, dyspnea, no consolidation; more insidious onset; milder clinical course

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

54. Normal Microscopic Structure of the Alveolar Wall

Normal Microscopic Structure of the Alveolar Wall

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
55. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

- **Interstitial pneumonitis**
 - Most caused by viral infection and response by lymphoid cells
 - Severe cases have damage to alveolar lining cells - - - > alveolar exudation of fibrin
 - Types of viral infections:
 - Measles
 - Formation of multinucleated giant cells
 - Inflammation of bronchioles with scarring
 - May be fatal in immunocompromised or poorly nourished
 - Cytomegalovirus
 - Self-limiting; small children; severe in immunocompromised

56. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

- **Interstitial pneumonitis - cont’d**
 - Types of viral infections: - cont’d
 - Influenza
 - Rhinitis, pharyngitis, tracheobronchitis, interstitial pneumonitis
 - Usually superinfection with *Staphylococcus aureus*
 - Rarely severe pneumonitis - - - > necrosis of alveolar lining cells - - - > death
 - Causes the most number of annual deaths secondary to viral pneumonia
 - Varicella
 - Chickenpox lung
 - Military small scars in lung parenchyma
 - May be fatal in the immunocompromised
57. Interstitial Pneumonitis

Interstitial Pneumonitis

Image not available due to copyright restrictions

Chronic inflammation of alveolar septae

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

58. Viral Pneumonia

Viral Pneumonia

Image not available due to copyright restrictions

Thickened alveolar walls are heavily infiltrated with mononuclear leukocytes

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
59. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

- Fungal pneumonia
 - Causes destructive inflammation
 - Typically seen in immunosuppressed
 - **Candida**
 - Severe debilitated, acute inflammation; bronchopneumonia pattern
 - **Aspergillus**
 - Extensive necrosis, infarction via vessel wall invasion
 - **Cryptococcal pneumonia**
 - Immunocompromised; granulomatous inflammation with consolidation and cavitation
 - Unusual environmental exposure in healthy patients exposed to agent indigenous to a particular geographic area
 - **Histoplasmosis, coccidioidomycosis, sporotrichosis**
 - Granulomatous inflammation; fibrosis resembling TB

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

60. Invasive Candidiasis in Immunocompromised Patient

Invasive Candidiasis in Immunocompromised Patient

Images not available due to copyright restrictions

Pseudohyphae and budding yeasts

Organisms within wall of a pulmonary vessel

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
61. Aspergillus

Areas of organizing infarction (arrow)

*Restricted use. PETR; University of Alabama at Birmingham, Department of Pathology

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

62. Infective Disease of the Respiratory System

- **Immunosuppressed** – such as AIDS
 - Opportunistic infections
 - Pneumonia
 - Routine bacterial pathogens of community acquired are more severe
 - *Mycobacterium tuberculosis* or atypical mycobacteria
 - CMV, herpes simplex
 - *Candida, Aspergillus, Pneumocystis carinii* (alveoli filled with fine, foam-like material; fungus)
 - Children – lymphocytic interstitial pneumonitis of unknown cause

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
63. Pneumocystis Carinii Pneumonia

Pneumocystis Carinii Pneumonia

Images not available due to copyright restrictions

Alveoli are filled with foamy ‘cotton candy’ exudate (left) and GMS stain demonstrates cup-shaped cyst wall within the exudate (above)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

64. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

- **Pneumonia - key facts**
 - Lobar type spread through alveoli to involve whole lobes
 - Bronchopneumonia develops as spread from tracheobronchial infection
 - Atypical type causes predominantly interstitial inflammation
 - Different sets of organisms cause community-acquired type
 - Most common community acquired infections are due to *Strept. pneumoniae*

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
65. Infective Disease of the Respiratory System

Infective Disease of the Respiratory System

- Pneumonia key facts – cont’d
 - Majority of hospital-acquired cases are due to gram-negative organisms
 - Unusual environmental exposure is a factor in psittacosis, Legionnaire’s disease, and fungal pneumonias
 - Aspiration pneumonia results in both chemical and mixed infective damage to lungs
 - Opportunistic infections affect patients with immunsuppression. Main groups include mycobacteria, viruses, fungi, and protozoa

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

66. Infective / Obstructive Diseases of the Respiratory System...

Infective / Obstructive Diseases of the Respiratory System

- Bronchiectasis
 - Permanent abnormal dilatation of the bronchial tree (main bronchus, esp. base of the lungs) due to chronic infection with inflammation and necrosis of the bronchial wall
 - Most often involves the lower lobes of both lungs
 - Predisposes to infection
 - Recurrent cough and hemoptysis; expectorate copious quantities of infected purulent sputum; may lead to lung abscess
 - Recurrent episodes of chest infection common
 - Mixed flora including anaerobes

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
67. Infective / Obstructive Diseases of the Respiratory System...

Infective / Obstructive Diseases of the Respiratory System

• Bronchiectasis – cont’d
 – Airways typically dilated to 5-6 times normal diameter and may contain purulent secretions
 – Pathogenesis
 • Interference with drainage of bronchial secretions
 – Obstruction by tumor or foreign body
 – Abnormal mucus viscosity (cystic fibrosis)
 – Inamotile cilia syndrome
 • Recurrent and persistent infection weakening bronchial walls
 • Chronic sinusitis with postnasal drip
 • Also idiopathic form

68. Bronchiectasis

Images not available due to copyright restrictions

Cross section of lung with dilated bronchi extending almost to pleura

Lower lung lobe surgically resected; large dilated air passages (P)
69. Infective / Obstructive Diseases of the Respiratory System...

Infective / Obstructive Diseases of the Respiratory System

- **Bronchiectasis – cont’d**
 - Histology
 - Chronic inflammation in the wall of the abnormal bronchi; epithelium replaced by inflammatory granulation tissue (bleeds and causes hemoptysis) and squamous metaplasia with bronchial mucosa
 - May be fibrous scarring and obliteration → respiratory failure
 - Complications
 - Chronic suppuration
 - Formation of lung abscess
 - Hematogenous spread of infection (esp. brain)
 - Systemic amyloidosis

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

70. Infective / Obstructive Diseases of the Respiratory System...

Infective / Obstructive Diseases of the Respiratory System

- **Bacterial lung abscess**
 - Cavity, 1-3 cm, containing pus surrounded by fibrosis and organizing lung
 - Predisposers
 - Infection in pulmonary infarct
 - Unresolved acute pneumonia (esp. Staph)
 - Aspiration of gastric contents
 - Bronchiectasis
 - Complications
 - Rupture into pleura → empyema, pneumothorax
 - Bacteremia → central abscess

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
71. Lung Abscess – from infected area of infarction

Image not available due to copyright restrictions

Cavity of lung abscess (A) filled with pus and a wall (W) of acute inflammatory granulation tissue

* Restricted use. PEIR, Dr. Peter Anderson, University of Alabama at Birmingham, Department of Pathology.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

72. Chronic Obstructive Airway Diseases (COAD)

Chronic Obstructive Airway Diseases (COAD)

• Conditions in which there is chronic limitation to airflow in the lungs
• Flow is reduced due to either:
 – increase in airway resistance (narrowing of airways)
 or
 – reduced outflow (elastic recoil of lungs lost)
• Lung function test results:
 – 1-second forced expiratory volume
 • Marked decrease
 – Forced vital capacity:
 • Decreased or normal
• Main diseases:
 – Asthma (narrowing)
 – Emphysema (loss of elastic recoil)
 – Chronic bronchitis (narrowing)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Chronic Obstructive Airway Diseases

- COAD often contrasted with restrictive pulmonary disease in which reduced lung capacity is due to:
 - Chest wall or skeletal abnormalities such as kyphoscoliosis
 - Interstitial or infiltrative parenchymal disease

- In restrictive pulmonary diseases lung function test results:
 - 1-second forced expiratory volume
 - Reduced
 - Forced vital capacity:
 - Reduced

Chronic Obstructive Airway Diseases

- **Asthma**
 - Most common cause of recurrent breathlessness, cough, and wheezing on expiration due to narrowing of airways
 - 5% of adults
 - 10% of children
 - Obstruction of small airways by combination of bronchospasm and mucus plugging
 - Fluctuates with time
 - Frequently partially reversible with bronchodilator drugs
Chronic Obstructive Airway Diseases

- Asthma pathogenesis – cont’d
 - Complex low-grade chronic inflammatory response in bronchial mucosa with a variety of triggers causing acute exacerbations
 - Triggers
 - Allergy – dust mites
 - Infection - viral
 - Occupational exposure
 - Drug-induced – aspirin, Beta-antagonists
 - Irritant gases – sulfur dioxide, nitric oxide, ozone
 - Psychological stress
 - Exertion
 - Cold air

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

Chronic Obstructive Airway Diseases

- Asthma – cont’d
 - Most have mild disease with acute episodes of bronchospasm
 - Drug therapy
 - Beta 2 adrenergic receptor agonists and corticosteroids
 - Complications
 - If severe (chronic) then airway obstruction persists despite drug therapy: superimposed infections, chronic bronchitis, and pulmonary emphysema
 - Status asthmaticus
 - Severe, acute asthma that can last for days and does not respond to drug therapy
 - Death possible from acute respiratory insufficiency

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Chronic Obstructive Airway Diseases

- **Asthma – cont’d**
 - **Types**
 - **Extrinsic (immune)**
 - Mediated by type I hypersensitivity response involving IgE bound to mast cells
 - Begins in childhood usually in families with history of allergy
 - **Intrinsic (nonimmune)**
 - Asthma associated with chronic bronchitis, exercise- or cold-induced asthma
 - Usually begins in adult life and not associated with a history of allergy

Chronic Obstructive Airway Diseases

- **Asthma – cont’d**
 - **Pathogenesis (structural changes)**
 - **Bronchoconstriction**
 - Increased smooth muscle (hypertrophy)
 - **Hypersecretion**
 - Hyperplasia of bronchial submucosal glands and goblet cells with plugging of airways
 - **Mucosal edema**
 - Narrowing of airways
 - **Extravasation**
 - Plasma into submucosal tissues

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
79. Chronic Obstructive Airway Diseases

Chronic Obstructive Airway Diseases

- Asthma - cont’d
 - Pathogenesis (structural changes) - cont’d
 - Infiltration of bronchial mucosa
 - Eosinophils, mast cells, lymphoid cells, macrophages
 - Focal necrosis
 - Airway epithelium
 - Deposition
 - Collagen beneath bronchial epithelium
 - Sputum
 - Charcot-Leyden crystals (from eosinophil derived proteins)
 - Curschmann spirals (mucus plugs from small airways with whorl-like accumulations of epithelial cells)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

80. Asthma - Structural Changes

Asthma - Structural Changes

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
81. Asthma - Structural Changes

Asthma - Structural Changes

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

82. Chronic Obstructive Airway Diseases

Chronic Obstructive Airway Diseases

- Asthma - cont’d
 - Cellular mechanisms
 - Immune mechanisms
 - 80% of cases; type 1 hypersensitivity
 - Mast cells
 - Release histamine but antihistamines not effective in providing relief
 - T-cells
 - Release IL-5 to recruit eosinophils
 - Eosinophils
 - Migrate into the mucosa releasing many inflammatory mediators (e.g., leukotrienes, prostaglandins, thromboxane, PAF)
 - Local peptides released that cause edema and hypersecretion of mucus
 - Inflamed bronchial walls cause airflow restrictions due to surfactant depletion

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
83. Normal vs. Abnormal Bronchiole in Asthma

Normal vs. Abnormal Bronchiole in Asthma

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

84. Asthma

Asthma

Images not available due to copyright restrictions

Immediate Stage of Asthma Late Stage of Asthma

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Chronic Obstructive Airway Diseases

- **Emphysema**
 - Permanent dilation of any part of the respiratory acinus (air spaces distal to the terminal bronchioles) with destruction of alveolar walls but lack of scarring; strongly assoc. with cigarettes
 - Functionally, loss of elastic recoil in lungs
 - Tissue destroyed \(\rightarrow\) reduced gas exchange area
 - If severe then, reduced oxygen uptake despite increased ventilation \(\text{AND}\)
 - Blood oxygenation maintained by rapid respiratory rate but a feeling of breathless on the slightest exertion and hypoxia occurs, “pink puffer” – overventilate to maintain oxygenation

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

Chronic Obstructive Airway Diseases

- **Emphysema – cont’d**
 - If pure condition – “pink puffer”
 - Only in late disease does cyanosis, hypoxia, hypercapnia, respiratory acidosis and cor pulmonale develop
 - Exhalation is normally a passive respiratory function requiring no work, it becomes active in emphysema
 - Clinically increased anterioposterior diameter of the chest (barrel-chest); increased total vital capacity

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
87. Chronic Obstructive Airway Diseases

Chronic Obstructive Airway Diseases

- Emphysema – cont’d
 - Pathogenesis
 - (?): Parenchymal destruction by secreted extracellular proteases; normal defensive protease inhibitors (e.g., alpha-1 antitrypsin) being either inactivated or absent - an imbalance between proteases and protease inhibitors
 - Smoking - increases release of proteases (e.g., elastase) from PMN and macro; inactivates \(\alpha_1 \)-antitrypsin
 - Congenital - lack protease inhibitors

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

88. Pathogenesis of Emphysema

Pathogenesis of Emphysema

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
89. Pathogenesis of Emphysema

Pathogenesis of Emphysema

Proteases destroy lung tissue due to imbalance between proteases and their inhibitors; smoking increases release of proteases as does congenital lack of protease inhibitors.

90. Chronic Obstructive Airway Diseases

Chronic Obstructive Airway Diseases

- Emphysema – cont’d
 - Review of normal anatomy
 - Respiratory acinus distal to the terminal bronchioles consists of respiratory bronchioles, alveolar ducts and terminal acini (alveolar sacs)
 - Two main generalized forms - defined by location of damage in respiratory acinus
 - Centriacinar and panacinar
 - Gross
 - Lungs are voluminous with large dilated air spaces
91. Bullous Emphysema with Apical and Subpleural Bullae

Bullous Emphysema with Apical and Subpleural Bullae

* Restricted use. PEIR: University of Alabama at Birmingham, Department of Pathology

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

92. Pulmonary Emphysema

Pulmonary Emphysema

Image not available due to copyright restrictions

Marked enlargement of airspaces with thinning and destruction of alveolar septa

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
93. Chronic Obstructive Airway Diseases

Chronic Obstructive Airway Diseases

- **Emphysema – cont’d**
 - Centriacinar (centrilobular) form
 - Most common
 - Associated with smoking, chronic bronchitis and inflammation of the distal airways
 - Most often seen in upper part of lobes
 - Pathogenesis
 - Secretion of extracellular proteases by local inflammatory cells
 - Dilatation of the respiratory bronchioles at the center of the respiratory acinus
 - Dilated air spaces are surrounded by normal-sized alveolar ducts

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

94. Centriacinar Emphysema

Centriacinar Emphysema

Images not available due to copyright restrictions

dilated air spaces (D) surrounded by normal ones

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
95. Chronic Obstructive Airway Diseases

Chronic Obstructive Airway Diseases

- Emphysema - cont’d
 - Panacinar form - loss of elasticity
 - Involves dilation of the entire respiratory acinus
 - Commonly associated with smoking
 - Pathogenesis
 - Related to excessive activity of extracellular enzymes secreted by inflammatory cells
 - α-1 antitrypsin deficiency due to smoking or congenital
 - Dilation of the terminal acini (alveolar sacs) and alveolar ducts
 - Later affects respiratory bronchioles and terminal bronchioles
 - Dilated air spaces evident uniformly in all lobes

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

96. Panacinar Emphysema

Panacinar Emphysema

dilated air spaces (D) evident in all lobes

Images not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
97. Centrilobular and Panacinar Emphysema

Centrilobular and Panacinar Emphysema

- Centrilobular emphysema with emphysematous foci (E) abut the arteries but normal alveolar spaces are adjacent to the septa (S).

- Panacinar emphysema with more generalized distribution of the permanently enlarged emphysematous foci.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

98. Chronic Obstructive Airway Diseases

Chronic Obstructive Airway Diseases

- **Other emphysemas** = also have dilated air spaces but not the 2 classic forms since scarring present
 - Localized (paraseptal)
 - Probably due to infection, inflammation and fibrosis
 - Localized to distal part of acinus including alveolar ducts and terminal acini (alveolar sacs)
 - Subpleural zones of upper lobes, adjacent to lobular septa, around blood vessels and bronchi
 - Scar
 - Dilated air spaces around scarred lung for whatever reason
 - Focal dust
 - Dilatation of centrilobular air spaces around aggregates of macrophages containing coal dust; no functional disability
 - Compensatory
 - Dilatation of air spaces that takes place in areas around collapsed lung or after surgical lung resection

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
99. Chronic Obstructive Airway Diseases

Chronic Obstructive Airway Diseases

- **Emphysema complications**
 - Complicated by, or coexistent with, chronic bronchitis
 - May be complicated by interstitial emphysema
 - Air escapes into the interstitial tissues of the chest from a tear in the airways
 - Rupture of a surface bleb \(\rightarrow \) pneumothorax

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

100. Chronic Obstructive Airways Disease

Chronic Obstructive Airways Disease

- **Chronic bronchitis**
 - A functional clinical disorder in which there is a cough productive of sputum on most days for 3 months of the year for at least 2 successive years
 - Structural changes
 - Secretion of abnormal amounts of mucus \(\rightarrow \) plugging of the airway lumen
 - Hypersecretion associated with hypertrophy and hyperplasia of bronchial submucosal mucus secreting glands
 - Increase of Reid index = ratio of gland:wall thickness in the bronchus
 - Inflammation typically not present but excess mucus can result in coincidental respiratory tract infections with secondary inflammation; squamous metaplasia common

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
101. **Chronic Obstructive Airway Diseases**

Chronic Obstructive Airway Diseases

- **Chronic bronchitis – cont’d**
 - Airway obstruction due to luminal narrowing and mucus plugging -> alveolar hypoventilation, hypoxemia, and hypercapnia
 - Typically cyanosed but not usually with distressing dyspnea
 - *Blue bloaters* – constantly cyanosed
 - Clearly linked to cigarette smoking
 - Also associated with air pollution, infection, and genetic factors

102. **Chronic Bronchitis**

Chronic Bronchitis

Images not available due to copyright restrictions

Marked thickening of the mucous gland layer and squamous metaplasia of the lung epithelium

Plugging (P) of the airway lumen with mucus; hypertrophy and hyperplasia of mucous glands (M); squamous metaplasia (S) common if persistent or recurrent superimposed infections

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
103. **Chronic Obstructive Airway Diseases**

Chronic Obstructive Airway Diseases

Image not available due to copyright restrictions

```
"Blue bloater"  "Pink Puffer"
```

Increase in airway resistance Reduced outflow
(narrowing of airways)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

104. **Chronic Obstructive Pulmonary Disease [COPD]**

Chronic Obstructive Pulmonary Disease [COPD]

- Frequently, chronic bronchitis, emphysema, and asthma are seen together as a mixed disease
 - Heavy smokers
 - Persistent cough with sputum
 - Breathlessness on exertion
 - Airways obstruction
 - Frequently also have a reversible component to airways obstruction
 - Superimposed acute episodes of infection cause acute decline in lung function and precipitate acute deterioration of chronic cor pulmonale
 - Prophylactic pneumococcal and influenza vaccines advisable
 - **Main risk factors**
 - Lifetime smoking exposure
 - Childhood asthma

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Chronic Obstructive Airway Diseases

Summary
- Chronic bronchitis and asthma cause airway narrowing; emphysema causes loss of recoil in lungs.
- Asthma is characterized by a chronic inflammatory response in airways, leading to reversible airways obstruction.
- Muscle spasms, mucus plugging and mucosal edema cause airway obstruction.
- Generalized emphysema is permanent dilatation any part of the respiratory acinus, with destruction of tissue in the absence of scarring.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

Chronic Obstructive Airway Diseases

Summary – cont’d
- Emphysema caused by unregulated extracellular protease (secreted from inflammatory cells) activity.
- Two patterns of generalized emphysema: centrilobular and panacinar.
- Chronic bronchitis - airways show mucus hypersecretion with mucous gland hyperplasia.
- May patients with chronic bronchitis have an asthmatic component to obstruction, as well as emphysema.
- Pulmonary hypertension and right-sided heart failure are common in long-standing (i.e., chronic) obstructive pulmonary disease [COPD].

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS