1. Nervous System Part 2

Nervous System Part 2
Basic Human Pathology II, 2008

Michael A. Kahn, DDS
Professor and Chairman
Department of Oral and Maxillofacial Pathology
Tufts University School of Dental Medicine

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

2. Alzheimer Disease

Alzheimer Disease

- Most common neurodegenerative disease
 - Most important cause of progressive dementia
- Etiology - unknown
 - Abnormal amyloid gene expression?
- Progressive failure of memory
 - Early
 - Loss of recent memory
 - Later
 - Loss of long-term memory
 - Inability to read, count, or speak

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
3. Alzheimer Disease

Alzheimer Disease

- **Other Signs/Symptoms**
 - Degeneration of temporal and parietal association cortex
 - Dyspraxia (painful functioning of an organ)
 - Dysphasia
 - Motor problems, contractures, and paralysis
 - Frequently emotional disturbance

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

4. Alzheimer Disease

Alzheimer Disease

- **Late Signs/Symptoms**
 - Immobility
 - Emaciation
 - Pneumonia
 - Death

- **Gross appearance**
 - Brain smaller, lighter than normal
 - Shrinkage of gyri
 - Widening of cerebral hemispheres sulci
 - Temporal lobe - esp. parahippocampal gyrus
 - Frontal and parietal regions also
 - Occipital and motor cortex are generally spared

* Restricted use. FEIR; University of Alabama at Birmingham, Department of Pathology

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
5. Alzheimer Disease

Alzheimer Disease

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

6. Alzheimer Disease

Alzheimer Disease

Decreased neurons

Hippocampus: memory and learning

Nucleus basalis of Meynert: cholinergic system of neurons

Amygdala: emotions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
7. Alzheimer Disease

Alzheimer Disease

Image not available due to copyright restrictions.

The diseased brain (right side) exhibits atrophy with loss of cortex and white matter, esp. in hippocampal region (H).

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

8. Alzheimer Disease

Alzheimer Disease

Image not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
9. Alzheimer Disease

Alzheimer Disease

❖ Four types
 - Based on genetic abnormalities of chromosomes #21, #19, #1, and #14
 ➢ Sporadic late onset – most common (> 60 yrs. old)
 ➢ Familial late onset - uncommon
 ➢ Familial early onset – rare (~ age 40)
 ➢ Associated with Down’s syndrome

❖ Alzheimer precursor protein (APP)
 • Amyloid - derived from normal cell-membrane protein of unknown function on chromosome #21
 ➢ Defects in APP explains some early onset familial and association with Down’s syndrome
 • Aβ protein (A4)
 ➢ Protein fragment of APP

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

10. Alzheimer Disease

Alzheimer Disease

❖ Histology
 • Senile (neuritic) plaques
 ➢ Aβ protein scattered in cerebral cortex - spherical focal deposits
 • Neurofibrillary tangles
 ➢ Intraneuronal intracytoplasmic inclusions comprising bundles of abnormal filaments in cortical neurons
 ➢ Composed of Tau protein
 ➢ Microtubule binding, flame-shaped protein that occupies most of the neuron’s cytoplasm
 • Neuropil thread
 ➢ Fine cortical nerve cell processes that become twisted and dilated
 ➢ Also filled with Tau protein

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Alzheimer Disease

- **Histology (cont’d)**
 - Granulovacuolar degeneration
 - Intraneuronal cytoplasmic granule-containing vacuoles (pyramidal cells of the hippocampus)
 - Amyloid angiopathy
 - Amyloid deposition in and about vessels
 - Hirano bodies
 - Intracytoplasmic proximal dendritic eosinophilic inclusions consisting of actin

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

Alzheimer Disease

Image not available due to copyright restrictions

IHC staining with amyloid plaques (yellow arrows), composed of Aβ protein, scattered in the cortex

IHC staining with neurofibrillary tangles (T) composed of Tau protein; also neuropil threads are seen (green arrows)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
13. Alzheimer Disease

Alzheimer Disease

Image not available due to copyright restrictions

Amyloid plaques – high power

Image not available due to copyright restrictions

Neurofibrillary tangles – high power

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

14. Alzheimer Disease

Alzheimer Disease

• Diagnosis
 - Presence of lesions in high density with clinical dementia
 - Neurofibrillary plaques/tangles also seen in cognitively normal elderly brains

• Widespread neurotransmitter defects
 - Loss of acetylcholine from the cortex

• Treatment
 - Cholinergic transmission supplements

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
15. Metabolic and Toxic Disease - Overview

Metabolic and Toxic Disease - Overview

- Several major diseases due to metabolic or toxic causation
 - Reflection of vulnerability of nervous system to injury
- Causes
 - Vitamin deficiency states
 - Liver failure
 - Carbon monoxide poisoning
 - Alcohol abuse

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

16. Vitamin Deficiency States

Vitamin Deficiency States

- Vitamin B₁ (thiamine)
 - Wernicke’s encephalopathy in alcoholics
- Vitamin B₁₂
 - Pernicious anemia
- Degeneration of the lateral and posterior columns of the spinal cord
 - Paresthesias
 - Ataxia
 - Sensory abnormalities

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
17. Chronic Alcoholism

Chronic Alcoholism

- Associated with several diseases of the CNS and PNS
- Sometimes cognitive decline
- Acute alcoholic intoxication \(\rightarrow\) neuronal depression \(\rightarrow\) death (cessation of breathing)
- Gross appearance
 - Cerebral cortical atrophy

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

18. Chronic Alcoholism

Chronic Alcoholism

- Acute episode
 - May be fatal unless B-complex vitamins administered
- Korsakoff’s psychosis
 - Damage to the limbic system following repeated episodes
 - Permanent impairment of recent memory
- Fetal alcohol syndrome
 - Alcohol exposure of the fetus when mother is dependent
 - Growth retardation and cerebral malformations

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
19. Wernicke’s Encephalopathy

Wernicke’s Encephalopathy

- Caused by thiamine deficiency in alcoholics
- Triad
 - Confusion
 - Cerebellar ataxia
 - Cerebellar degeneration associated with severe atrophy of the cerebellar cortex, pons, mamillary bodies, and other paramedian masses of gray matter in the brain stem and diencephalon
 - Abnormal eye movements with ophthalmoplegia (paralysis of 1 or more ocular muscles)
- Petechial hemorrhages from small vessels in the mamillary bodies which are associated with necrosis and loss of neurons \rightarrow shrinkage (atrophy) and gliosis

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

20. Wernicke’s Encephalopathy

Wernicke’s Encephalopathy

Image not available due to copyright restrictions

Mammillary bodies exhibit petechial hemorrhages

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Developmental Abnormalities

- **Introduction**
 - **Common**
 - 1% of newborns are affected
 - **Two main groups**
 1. Primary developmental abnormalities
 2. Secondary developmental abnormalities
 - **Direct result of a genetic abnormality**
 - **Disruption of development by an intrauterine disease process**
 - Infection or ischemic factors
 - Toxic factors

22.

Developmental Abnormalities

- **Etiology**
 - Reproductive counseling of parents
 - 60%
 - No identifiable causative factor
 - 20%
 - Environmental and genetic
 - 5%
 - Single gene defects
 - 5%
 - Chromosomal abnormalities
 - Down syndrome
 - Trisomy 13-15
 - Trisomy (17-18)
 - 10% - exogenous factors
 - Infection
 - Rubella
 - Cytomegalovirus
 - Toxoplasmosis
 - Toxins
 - Thalidomide
 - Aminopterin (folic acid antagonist)
 - Poor nutrition

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Developmental Abnormalities

• **Neural tube defects**
 - Defects of the closure of the neural tube
 - Most common cause of congenital malformation of the nervous system
 - Characteristically associated with increased concentration of alpha-fetoprotein in amniotic fluid or maternal serum
 - Also associated with maternal folic acid deficiency
 - Affects either cranial or spinal closure of the neural tube
 - Open defect or closed by meninges and skin

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

Developmental Abnormalities

• **Neural tube defects (cont’d)**
 - Cranial
 - **Anencephaly**
 - Most severe and common
 - Marked diminution (sometimes absence) of fetal brain tissue
 - Usually associated with absence of overlying skull
 - Cranial face and eyes are usually well developed
 - **Encephalocele**
 - Less severe
 - Defect in the bone of the skull is associated with cystic outpuffings of meninges which contain brain

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
25. Spinal Cord – Normal

Spinal Cord – Normal

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

26. Developmental Abnormalities

Developmental Abnormalities

• Neural tube defects (cont’d) Images not available due to copyright restrictions
 – Spinal cord
 ✷ Spinal bifida occulta
 – Abnormal development of the bony arch of the spinal column
 – Meninges and cord are normal
 – May have sinus tract to skin surface or subcutaneous lipoma
 ✷ Meningocele
 – Abnormal development of spinal cord bony arch with cystic outpouchings of meninges covered by skin
 – Spinal cord normal or abnormally formed

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
27. Developmental Abnormalities

Developmental Abnormalities

• Neural tube defects (cont’d)
 – Spinal cord (cont’d)
 ✷ Meningocele
 – Abnormal development of the bony arch of the spinal cord
 – Exposure of abnormally developed spinal cord
 – No skin cover
 ✷ Meningomyelocele
 – Abnormal development of the bony arch of the spinal cord
 – Cystic outpouchings of meninges including nerve roots
 – Incorporating abnormally developed spinal cord
 – No skin cover

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

28. Spinal Neural Tube Defects

Spinal Neural Tube Defects

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
29. Meningocele

Meningocele

Meningocele

Image not available due to copyright restrictions

* Restricted use. PEIR: Slice of Life and Suzanne S. Stemmer

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

30. Developmental Abnormalities

Developmental Abnormalities

• Neural Tube Defects (cont’d)
 – Spinal cord
 • Neurological deficits related to the degree of severity of
 abnormality of the spinal cord and nerve roots
 – Commonly paraplegia w/ urinary and fecal incontinence
 • Without surgical correction - - - -> spinal and limb deformities
 ❖ Major complication
 – Recurrent urinary tract infections - - -> chronic pyelonephritis and renal failure
 • Diagnosis in utero
 – Ultrasound scanning
 – Increased levels of alpha-fetoprotein in serum or amniotic fluid

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
31. Developmental Abnormalities

Developmental Abnormalities

- **Arnold-Chiari Malformation Type II**
 - Second most common developmental abnormality of the CNS
 - Herniation of the brain and the lower part of the cerebellum into the foramen magnum
 - Blocks drainage of the CSF → hydrocephalus
 - Nearly always associated with development of a lumbar meningomyelocele

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

32. Inborn Errors of Metabolism

Inborn Errors of Metabolism

- **Introduction**
 - Either primary or consequence of systematic disease
 - Main disorders
 - Leukodystrophies
 - Myelin loss
 - Storage disorders
 - Lack of normal enzyme activity causing accumulation of a metabolic product in nerve cells

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
33. Inborn Errors of Metabolism

Inborn Errors of Metabolism

- **Leukodystrophies**
 - Usually occur in childhood as cognitive or motor decline
 - Also seen in adults
- **Etiology**
 - Genetically determined metabolic abnormalities in the formation or metabolism of myelin
- **Gross**
 - Small brain
 - Loss of myelin with gliosis (pale stained)
 - Dilated lateral ventricle (compensation for loss of cerebral tissue)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

34. Leukodystrophy

Leukodystrophy

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
35. Inborn Errors of Metabolism – Storage Disorders

Inborn Errors of Metabolism – Storage Disorders

- Storage of abnormal material in the nervous system
 - Most commonly arises in childhood (cognitive or motor decline)
 - Gangliosidoses
 - Mucopolysaccharidoses
 - Gaucher’s disease
 - Cereoid lipofuscinosis
 - Niemann-Pick disease
- Diagnosis
 - Abnormal enzyme activity in lymphocytes or cultured fibroblasts

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

36. Wilson's Disease

Wilson’s Disease

- Autosomal recessive disorder of copper metabolism
 - Excessive accumulation of copper in the brain, liver and kidneys
 - Psychiatric disease (psychosis)
 - Movement disorder
 - Spasticity, rigidity, dysarthria, painful muscle spasms or odd eye movement
- Etiology
 - Gene that codes for a copper transport ATPase is located on chromosome #13
- Gross advance untreated cases
 - Shrinkage of the basal ganglia (loss of nerve cells and gliosis)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
37. Phacomatoses

Phacomatoses

• Introduction
 ❖ Familial disorders in which there are developmental abnormalities associated with hamartomatous or neoplastic growths
 – Main types of diseases
 • Neurofibromatosis
 – Types I and II
 • Tuberous sclerosis
 • Von Hippel-Lindau disease

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

38. Phacomatoses

Phacomatoses

❖ Neurofibromatosis, type II (bilateral acoustic neurofibromatosis)
 – Autosomal dominant (1 in 100,000)
 – Gene defect is located on chromosome #22
• Clinical
 • Bilateral schwannomas of the VIII cranial nerve (acoustic neuroma)
 • Tendency to develop other brain tumors:
 – Meningiomas and gliomas
 • Tinnitus and deafness
 • Signs of a mass compressing lower cranial nerves/brain stem

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
39. **Phacomatoses**

Phacomatoses

- **Tuberous sclerosis**
 - Autosomal dominant (1 in 100,000)
 - Clinical
 - Epilepsy
 - Mental retardation
 - Angiofibromas of the skin
 - Retinal hamartomas
 - Minor lesions
 - Cardiac benign rhabdomyomas
 - Renal angiomyolipomas
 - Formes frustes are common
 - Full clinical phenotypes do not develop

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

40. **Phacomatoses**

Phacomatoses

- **Tuberous sclerosis (cont’d)**
 - Brain develops characteristic lesions termed **tubers**
 - Firm, white nodules 1-3 cm at crest of gyri
 - Harmless hamartomatous overgrowths of neurons and astrocytes
 - Gene on #16 codes protein and **tuberin**
 - Another gene codes for **hamartin**
 - Tuberin and hamartin associate together to form a functional complex

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
41. Tuberous Sclerosis

42. Tumors of the Nervous System – Overview

- Primary neoplasms commonly affect young patients (2nd to leukemia)
- Overall, account for about 2% of all deaths from cancer
- Most are intracranial
 - Tumors of the spinal cord are much less frequent
43. Tumors of the Nervous System – Overview

Tumors of the Nervous System – Overview

- In adults, majority of intracranial tumors are supratentorial
 - Strong fold of the dura mater roofing the posterior cranial fossa; midbrain
 passes thru opening; separates cerebellum from basal occipital and
 temporal lobes
- In children, majority of intracranial tumors are infratentorial
- Primary malignant CNS tumors rarely metastasize

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

44. Tumors of the Nervous System – Overview

Tumors of the Nervous System – Overview

- Benign intracranial tumors can result in devastating clinical consequences due to compression phenomena
- Classification – based on tissue derivation
 - Meningeal – epithelial cells of the meninges
 - Neuroepithelial – “gliomas” – astrocytes, oligodendrocytes, ependyma, neurons, primitive embryonal cells
 - Non-neuroepithelial – cerebral lymphomas, germ cell tumors, cysts and tumors extending from the skull and pituitary gland
 - Metastases – overall most common cause of neoplasm affecting the brain

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
45. Tumors of the Nervous System – Metastases to CNS

Tumors of the Nervous System – Metastases to CNS

- Main primary sites to brain
 - Lung, breast, and skin
- Main primary sites to spinal cord
 - Prostate, kidney, breast, lung carcinomas
 - Lymphoma and myeloma
- Focal neurological signs and increased intracranial pressure
- Gross
 - Multiple sites
 - Begins at junction of cortex and white matter
 - Cerebral edema often extensive
 - Commonly affects the spinal cord as extradural deposits -> compression

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

46. Anatomical Distribution of Common Intracranial Tumors

Anatomical Distribution of Common Intracranial Tumors

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
47. Tumors of Meningeal Origin

Tumors of **Meningeal Origin**

❖ **Meningioma**
 - Benign tumor external to brain
 - Derived from meningotheial cells (arachnoid epithelial cells of the meninges)
 - 2nd most common intracranial tumor of adults
 - >30 yrs. old; > women
 - Arise from dura and grow slowly to compress and distort the underlying brain
 - Cerebral hemispheres and parasagittal region
 - Fissa cerebri, sphenoid ridge, olfactory area, and suprasellar region
 - Infiltration of the skull by tumor may occur -> local bony thickening

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

48. Tumors of Meningeal Origin

Tumors of **Meningeal Origin**

❖ **Meningioma**
 - Gross
 - Round, circumscribed
 - Most fleshy, rubbery consistency
 - Few tough, fibrous
 - 1-7 cm usually
 - Usually solitary, may be multiple
 - Histology
 - Whorled pattern of concentrically arranged spindle cells and laminated calcified psammoma bodies; variable cellularity
 - Treatment
 - Surgery often successful

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
49. Meningiomas

Meningiomas

Image not available due to copyright restrictions

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

50. Meningioma

Meningioma

Two sections from two different levels in the same brain show a meningioma (M) compressing the frontal lobe and distorting underlying brain

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
51. Tumors of Neuroepithelial Origin - Overview

Tumors of **Neuroepithelial** Origin - Overview

- Common primary brain tumors
 - Broad group name ‘gliomas’
- Main types derived from
 - Astrocytes
 - Oligodendrocytes
 - Ependyma
 - Choroid plexus
 - Neurons
 - Embryonal cell
- Range from benign/slow growing to malignant/rapidly growing (anaplastic gliomas)
- Treatment
 - Tendency for diffuse infiltration of adjacent brain
 - Difficult to remove surgically; frequent local recurrence

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

52. Tumors of Neuroepithelial Origin

Tumors of **Neuroepithelial** Origin

- **Astrocytoma**
 - Arise in cerebral hemispheres, brain stem, spinal cord or cerebellum
 - Derived from astrocytic cells
 - Variable types
 - Astrocytoma
 - Benign, slow growth with no atypia
 - Anaplastic astrocytoma
 - High cellularity, mitoses, pleomorphism, rapid pace of growth
 - Gross
 - Ill-defined, pale areas of softening which blends into normal adjacent brain

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
53. Astrocytoma

Astrocytoma

Image not available due to copyright restrictions

Low-grade astrocytoma (A) in the frontal lobe; indistinct margins, brain distortion evident

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

54. Tumors of Neuroepithelial Origin

Tumors of Neuroepithelial Origin

- **Astrocytoma**
 - Treatment
 - Complete surgical removal rarely possible
 - Surgical debulking and radiotherapy
 - No metastasis but can spread locally by diffuse infiltration of adjacent brain
 - Prognosis
 - Low grade – many years of survival
 - High grade – 4 - 5 years survival

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
55. Tumors of Neuroepithelial Origin

Tumors of Neuroepithelial Origin

- Glioblastoma multiforme
 - Most common primary intracranial neoplasm
 - Highly malignant astrocytic glial tumor
 - Rapid pace of growth
 - Peak occurrence in the late middle-age group
 - Gross
 - Necrotic hemorrhage masses; usually solitary
 - Most common arises in cerebral hemispheres
 - Less common in brain stem
 - Rare in cerebellum or spinal cord
 - Clinical
 - Headache
 - Hemiparesis
 - Personality change

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

56. Tumors of Neuroepithelial Origin

Tumors of Neuroepithelial Origin

- Glioblastoma multiforme
 - Histology
 - Mixture of astroglial cells with many mitoses and nuclear pleomorphism (anaplastic)
 - Necrosis
 - Hemorrhage always present
 - Surrounding pseudopalisade arrangement of tumor cells
 - Proliferation of endothelium in vessels

Image not available due to copyright restrictions

Pleomorphic cells in pseudopalisade arrangement with associated necrosis (N) and proliferation of endothelium in vessels (V)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
57. Glioblastoma Multiforme

Glioblastoma Multiforme

Image not available due to copyright restrictions

Large glioblastoma (G) arises from cerebral hemisphere and fills ventricular system

Frequently in the cerebral hemisphere

57

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

58. Tumors of Neuroepithelial Origin

Tumors of Neuroepithelial Origin

- **Glioblastoma multiforme**
 - *De novo* or arise in previously diagnosed lower grade astroglial tumor
 - Low grade -> anaplastic astrocytoma -> glioblastoma
 - Progression related to development of serial molecular genetic oncogene defects (p53 mutation on certain chromosomes)
 - Prognosis – very poor
 - Usually cause death by rapid local growth but may also spread within the neuroaxis
 - Median survival time of ~ 10 months from diagnosis

58

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
59. Tumors of Neuroepithelial Origin

Tumors of **Neuroepithelial Origin**

- **Oligodendroglioma**
 - Slow growing tumor composed of cells resembling oligodendrocytes
 - Arise in cerebral hemispheres and usually limited to that site
 - Middle-aged group
 - Gross
 - Ill-defined grayish white lesion; merges with adjacent brain
 - Histology
 - Closely packed cells with round nuclei, pale pink cytoplasm like oligo cells (“fried-egg”)
 - Foci of calcification

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

60. Tumors of Neuroepithelial Origin

Tumors of **Neuroepithelial Origin**

- **Oligodendroglioma**
 - Combination of astrocytoma and oligodendroglioma = oligoastrocytoma
 - Prognosis
 - Low grade
 - Good
 - High grade
 - > recurrence and spreads via CSF pathways

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
61. Oligodendroglioma

Image not available due to copyright restrictions

Rounded nuclei and vacuolated cytoplasm resembling oligodendroglia but do not exhibit biological markers

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

62. Tumors of Neuroepithelial Origin

Tumors of Neuroepithelial Origin

- Ependymomas
 - Etiology
 - Ependymal cells
 - Occurs esp. during first two decades of life
 - 10% of all intracranial childhood tumors
 - Most common sites
 - Spinal cord
 - 4th ventricle
 - May result in papillary growth that obstructs flow of CSF -> hydrocephalus

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
63. Ependymoma

Ependymoma

- Histology
 - Tubule or rosette structures resembling central canal of spinal cord
 - Cells encircling vessels or pointing toward a central lumen
 - Myxopapillary variant at filum terminale
 - Anaplastic variant

64. Tumors of Neuroepithelial Origin

Tumors of Neuroepithelial Origin

- Embryonal tumors (primitive neuroectodermal tumors; PNETs)
 - Common in childhood
 - Many primary tumors of CNS
 - Etiology
 - Small primitive cells that resemble multipotential cells of the developing fetal brain
 - Rapid growth
 - Tend to spread locally and via CSF pathways distally
 - Histology
 - Sheet of small anaplastic cells with neuronal and glial differentiation
65. PNET

Image not available due to copyright restrictions

Small cells with a high mitotic rate and some with neuroblastic rosettes (R) that indicate primitive neuronal maturation

65.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

66. Tumors of Neuroepithelial Origin

Tumors of **Neuroepithelial Origin**

- Embryonal tumor
 - Medulloblastoma
 - Most common in this group and one of the most common neoplasms of childhood
 - Highly malignant tumor of the cerebellum
 - Gross
 - Soft, white tissue
 - Histology
 - Sheets of closely packed primitive small cells arranged in rosettes (primitive neuronal maturation) or perivascular pseudorosette pattern
 - Treatment
 - Surgery, radiation, and chemotherapy

66.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
67. **Medulloblastoma**

Medulloblastoma

Image not available due to copyright restrictions

Arising in the cerebellum; soft, white tissue (T) in the vermis

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

68. **Non-Neuroepithelial Tumors of the CNS**

Non-Neuroepithelial Tumors of the CNS

- **Lymphomas**
 - Usually high-grade, B-cell, non-Hodgkin
 - Arise sporadically and with immunosuppression esp. in AIDS
 - Ill-defined, multifocal
 - Most common site
 - Hemispheric white matter
 - Histology
 - Atypical lymphoid cells infiltrate brain matter
 - Prognosis
 - Very poor; most dead within 5 yrs.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
69. Non-Neuroepithelial Tumors of the CNS

Non-Neuroepithelial Tumors of the CNS

• Germ Cell Tumors
 • Identical to those of the testis and ovary
 – Most arise in pineal gland
 – Full range of germ cell tumors
 – Most are malignant
 – Prone to spread via CSF pathways
 – Treatment
 • Radiotherapy and chemotherapy
 • Detection of tumor markers in CSF is used to monitor

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

70. Non-Neuroepithelial Tumors of the CNS

Non-Neuroepithelial Tumors of the CNS

• Developmental cysts
 • Dermoid and epidermoid cysts
 • Lined by squamous epithelium and filled with keratin
 • Slow expansion
 • Common in temporal region
 – Colloid cysts
 • Arise in 3rd ventricle; solitary; lined by columnar epithelium and filled with mucoid material
 • Blocks the foramen of Monro → hydrocephalus
 – Arachnoid cysts
 • Arise from leptomeninges; filled with CSF; cause compression of underlying brain

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
71. Non-Neuroepithelial Tumors of the CNS

Non-Neuroepithelial Tumors of the CNS

- **Craniopharyngioma**
 - Benign
 - Etiology
 - Derived from remnants of Rathke’s pouch
 - Composed of squamous epithelium
 - 3% of intracranial tumors
 - Most common in children
 - Compresses pituitary gland and damages the overlying hypothalamus and optic chiasma

72. Non-Neuroepithelial Tumors of the CNS

Non-Neuroepithelial Tumors of the CNS

- **Craniopharyngioma**
 - Gross
 - Cystic and solid areas
 - Cystic portion filled with thick fluid containing lipid
 - Frequently grows into adjacent blood vessels
 - Often calcifies
 - Infiltrative
 - Difficult to surgically remove
73. Craniopharyngioma

Solid (S) and cystic (C) areas; cyst has thick fluid containing lipid from breakdown of lining epithelium

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

74. Diseases of Peripheral Nerves – Introduction

• Composed of several fascicles, each surrounded by perineurium
• Within perineurium are individual axons supported by Schwann cells (form myelin)
• 3 main pathology types of damage to peripheral nerves
 1. Primary axonal degeneration
 ◦ Long axonal processes cannot be maintained by nerve cell bodies → degeneration of axons starting at periphery and progressing towards neuronal cell body (‘dying back neuropathy’)
 2. Primary demyelination
 ◦ Axons spared but Schwann cells and myelin are not
 3. Destruction of both axon and myelin

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
75. Diseases of Peripheral Nerves – Regeneration

Diseases of **Peripheral Nerves – Regeneration**

- **Regeneration**
 - Cell body of nerve intact and no scarring in the nerve then damage to a peripheral nerve or myelin may be repaired by regeneration

- **Wallerian degeneration**
 - Axon severed/damaged → axon and myelin distal to injury degenerate, removed by macrophages and Schwann cells

- **axon regeneration**
 - Target tissue (i.e., muscle) is denervated, atrophies
 - Schwann cells in the distal nerve proliferate and enlarge within the still intact basement membrane tube enclosing them.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

76. Diseases of Peripheral Nerves – Regeneration

Diseases of **Peripheral Nerves – Regeneration**

- Several small axons sprouts grow out/down the column of proliferated Schwann cells that act as a guide for regenerating axon → axon grows 2-3 mm per day eventually reinnervating the denervated tissue → axon remyelinated (myelin segments between the nodes of Ranvier shorter than in original nerve)
 - Axon’s capacity to regenerate allows surgical repair of peripheral nerves by nerve anastomosis after severance
 - Grafting of a portion of nerve is required when there has been scarring since axons can only grow down the intact basement membrane tubes of Schwann cells, not through a collagenous scar

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
77. Diseases of Peripheral Nerves

Diseases of Peripheral Nerves

- **Neuropathies**
 - Diseases of peripheral nerves; sensory or motor abnormalities or both
 - ‘Neuritis’ ≠ inflammatory pathology
 - Polyneuropathy
 - Generalized symmetrical involvement of peripheral nerves
 - Focal peripheral neuropathy
 - Affects peripheral nerve in a haphazard manner
 - Radiculopathy
 - Disease affecting a nerve root
 - Investigated by electrophysiology; if uncertain, biopsy performed
 - Most common site is sural nerve of the foot

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

78. Diseases of Peripheral Nerves

Diseases of Peripheral Nerves

- **Laceration, Compression, Entrapment**
 - Laceration (mechanical trauma)
 - One of the most common causes of peripheral nerve dysfunction
 - Penetrating trauma assoc. with some bone fractures
 - Nerve distal to the laceration undergoes Wallerian degeneration
 - If surgical anastomosis is performed then axons may regrow to re-innervate the denervated tissues

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
79. Diseases of Peripheral Nerves

Diseases of Peripheral Nerves

- Compression and Entrapment
 - Compressed nerves develop segmental demyelination and abnormal conduction and if prolonged damage -> axonal degeneration
 - Intervertebral foramina
 - Nerve roots compressed by prolapsed intervertebral discs osteophytes due to osteoarthritis of the spine
 - Median nerve
 - Compressed by swelling in the carpal tunnel at the wrist
 - Ulnar nerve
 - Compressed in the flexor carpal tunnel at the medial epicondyle of the humerus
 - Common peroneal nerve
 - Compressed at the neck of the fibula

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

80. Tumors of the Peripheral Nerves – Benign Nerve Sheath...

Tumors of the Peripheral Nerves – Benign Nerve Sheath Tumors

- Schwannoma (neurilemmoma)
 - Slow growing, encapsulated arises from Schwann cells
 - Usually solitary; rounded; 1-2 cm
 - Spindled shaped cells with palisading nuclei
 - When intracranial, usually 8th nerve involvement – acoustic neuroma – third most common primary intracranial neoplasm

- Neurofibroma
 - Solitary or multiple (neurofibromatosis, type 1)
 - Nodular
 - Discrete; fusiform or rounded; spindic cells
 - Plexiform
 - Diffuse; boggy, ill-defined, multiple; spindle cells and extracellular matrix material

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
81. Traumatic Neuroma (Amputation Neuroma)

Traumatic Neuroma
(Amputation Neuroma)

- Nerve severed by trauma or surgery - -> cut end develops collageneous scar associated with attempted regeneration of axons - - -> sometimes painful pressure to nodule
- Histology
 - Collagen, proliferated schwann cells and sprouting axon terminals
- Collagenous scarring prevents successful regrowth of axons down a nerve after trauma
 - Surgical removal; cut ends of nerve anastomosed often with nerve graft
- Clinical example
 - Leg amputation with limb prosthesis pain

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS