1. Basic Human Pathology Lecture #9 Vascular Hemodynamics

Basic Human Pathology Lecture #9
Vascular Hemodynamics

2007
Michael A. Kahn, DDS, Professor and Chairman
Lynn W. Solomon, DDS, MS, Assistant Professor
Department of Oral and Maxillofacial Pathology
Tufts University School of Dental Medicine

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

2. Vascular Hemodynamics

Vascular Hemodynamics

- Blood flow - Normal fluid homeostasis
 - Edema
 - Hyperemia
 - Hemorrhage
- Maintainence of blood as a liquid
 - Hemostasis
 - Thrombosis
- Embolism
- Infarction
- Shock

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
3. Vascular Hemodynamics

Vascular Hemodynamics

- Normal fluid homeostasis:
 - Intact circulation
 - Maintenance of vessel wall integrity
 - Physiologic ranges of
 - Intravascular pressure
 - Osmolarity
- Altered vascular homeostasis results in:
 - Change in net movement of water across the vascular wall

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

4. Edema

Edema

- Excess accumulation of fluid in the interstitial tissue spaces or body cavities
 - Under normal circumstances only a small amount of fluid leaks from vessels to form interstitial fluid which is removed by lymphatic vessels

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
5. Edema

Edema

Causes:
- More fluid leaves capillaries than enters:
 1. if the hydrostatic pressure in vessels is increased (e.g., interference with venous drainage, congestive heart failure)
 - Right-side -> peripheral (subcutaneous) edema; left-side -> pulmonary edema
 2. decreased plasma oncotic pressure (hypoproteinemia - albumin)
 - Nephrotic syndrome – loss of protein in kidney
 - Decreased albumin production in liver during cirrhosis
 3. vascular permeability is altered (allergic responses liberate histamine, acute inflammation, burn injury)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

6. Edema

Edema

Causes (cont’d)
- Increased sodium retention
 - Primary – assoc. with renal disorders
 - Secondary – occurs in congestive heart failure
 - Decreased cardiac output -> decreased renal blood flow -> activation of renin-angiotensin system -> aldosterone activated -> retention of sodium and water
- Blockage of lymphatics
 - Results in lymphedema

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
7. Causes of Edema

Causes of Edema

Image not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

8. Factors Affecting Fluid Transit Across Capillary Walls

Factors Affecting Fluid Transit Across Capillary Walls

Image not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
9. Causes of Edema

Causes of Edema

- Increased permeability
- Increased hydrostatic pressure
- Decreased oncotic pressure
- Lymphatic obstruction

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

10. Edema

Edema

- Two important types of edema due to cardiac failure
 - Pulmonary edema
 - Accumulation of fluid in the lung alveoli
 - Caused by increased hydrostatic pressure in the pulmonary vascular bed resulting from left-side heart failure
 - Peripheral (subcutaneous) edema
 - Accumulation of fluid in subcutaneous tissues
 - Caused by increased hydrostatic pressure in the systemic venous system resulting from right-side heart failure

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
11. Sequence of Events Leading to Systemic Edema

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

12. Vascular Hemodynamics: Slide 12

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
13. Pulmonary Edema

14. Pitting Edema of the Subcutaneous Tissues
Edema

Types of edema

- Anasarca
 - Generalized edema
- Hydrothorax
 - Accumulation of fluid in the pleural cavity
- Hydropericardium
 - Abnormal accumulation of fluid in the pericardial cavity
 - May result in cardiac tamponade
- Hydroperitoneum (ascites)
 - Abnormal accumulation of fluid in the peritoneal cavity

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

Edema

Types of edema (cont’d)

- Transudate
 - Noninflammatory edema fluid that results form altered intravascular hydrostatic pressure or osmotic pressure
 - Low protein content and specific gravity < 1.012

- Exudate
 - Edema fluid from increased vascular permeability as a result of inflammation
 - High protein content and specific gravity > 1.020
 - Contains large number of inflammatory leukocytes which often consume glucose and thus results in glucose content being greatly reduced

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
17. Ascites

18. Hyperemia

- Localized increase in the volume of blood in capillaries and small vessels
- Active hyperemia
 - Results from localized arteriolar dilation (blushing, inflammation)
19. Hyperemia

Hyperemia

- Passive congestion (passive hyperemia)
 - Results from obstructed venous return or increased back pressure from CHF
 - Active passive congestion – shock, acute inflammation, sudden right heart failure
 - Chronic passive congestion
 - Lung – left heart failure or mitral stenosis cause; congestion, distention of alveolar capillaries → rupture → heart failure cells (hemosiderin laden macrophages)
 - Liver and lower extremities – right heart failure cause with nutmeg liver (combination of dilated congested central veins, and brown yellow fatty liver cells)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

20. Chronic Passive Congestion – “Heart Failure Cell...”

Chronic Passive Congestion – “Heart Failure Cells”

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
21. Nutmeg Liver

Nutmeg Liver

Images not available due to copyright restrictions.

22. Hemorrhage

Hemorrhage

- Escape of blood from the vasculature into surrounding tissues, hollow organ or body cavity or to the outside
 - Caused by rupture of blood vessels
 - Massive exsanguination usually caused by trauma to a major artery or vein but may also be from bursting of a vessel weakened by disease
 - Bleeding into tissues or body cavities results in several types of hemorrhage

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
23. Hemorrhage

Hemorrhage

- Types of hemorrhage:
 - Hematoma
 - Accumulation of blood within soft tissues usually due to trauma of vessels but occasionally follows spontaneous rupture of diseased vessels
 - Petechia and Ecchymosis
 - 1-2 mm and 2-10 mm, respectively tissue hemorrhages of the skin or oral mucosa due to abnormal small vessel fragility, abnormal blood clotting or abrupt increase in pressure within small venules and capillaries
 - Hemopericardium
 - Collection of blood in the pericardial cavity due to rupture of the heart or the aorta
 - May result in cardiac tamponade

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

24. Hemorrhage

Hemorrhage

- Types of hemorrhage (cont’d)
 - Hemothorax
 - Collection of blood in the pleural cavities due to trauma or rupture of the aorta
 - Hemoperitoneum
 - Collection of blood in the peritoneum due to rupture of an aortic aneurysm or trauma to liver, spleen, or aorta
 - Hemoarthrosis
 - Collection of blood in a joint space due to trauma or bleeding disorder (e.g., hemophilia)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
25. Purpura = Petechiae and Ecchymoses

Purpura = Petechiae and Ecchymoses

Image not available due to copyright restrictions.

26. Petechial hemorrhages of the colonic mucosa / Fatal intracer...

Petechial hemorrhages of the colonic mucosa / Fatal intracerebral bleed

Images not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Hemostasis

- Normal hemostasis results from well regulated processes that maintain blood in a fluid, clot-free state in normal vessels while inducing the rapid formation of a localized hemostatic plug at the site of vascular injury
- Dependent on the vascular wall, platelets and the coagulation cascade (as is pathological thrombosis)
- Has a normal general sequence of events

Normal Hemostatic Process Events

Image not available due to copyright restrictions.
31. Thrombosis

Thrombosis

- Process of thrombus formation due to activation of the normal blood coagulation system
 - An intravascular coagulation of blood often causing significant interruption of blood flow
 - Predisposed by venous stasis, CHF, polycythemia, sickle cell disease, visceral malignancies, oral contraceptives especially when combined with cigarette smoking

- A thrombus is a structured solid mass composed of blood constituents (platelets, insoluble fibrin, embedded RBCs) that forms within the cardiovascular system
 - Not a coagulum = unstructured and forms when blood clots outside the circulatory system

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

32. Thrombosis

Thrombosis

Laminated layers of platelets (P) and fibrin / RBCs (F)

- Morphological characteristics
 - Arterial thrombi
 - Formed in areas of active blood flow
 - Mature have dark gray layers of platelets interspersed with lighter layers of fibrin = lines of Zahn
 - Eventually liquefy and disappear or organized with fibrous tissue formation

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
33. Thrombosis

Thrombosis

- Morphological characteristics (cont’d)
 - Venous thrombi (phlebothrombosis)
 - Form in areas of less active blood flow, most often veins of the lower extremities and periprostatic or other pelvic veins
 - Predisposed to venous stasis
 - Dark red with higher concentration of RBCs than arterial thrombi so lines of Zahn not present or not prominent
 - Often associated with concurrent venous inflammatory changes

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

34. Hemostasis / Thrombosis

Hemostasis / Thrombosis

- Coagulation cascade
 - Ultimate aim is to generate a solid plug of cross linked protein that seals a defect in a blood vessel wall
 - Protein deposited is fibrin generated from its circulating precursor protein fibrinogen
 - To achieve this aim many different protein interact in a cascade
 - Each coagulation factor has a number: I-XIII
 - Nearly all of these are functionally proteases
 - Factors V and VIII are not; act as co-factors

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Hemostasis / Thrombosis

- Compartments of the coagulation cascade
 - Common pathway
 - Results in cross-linked fibrin
 - Thrombin is the key protease
 - Has feedback to activate co-factors, other proteases and thus amplifies the cascade
 - Extrinsic pathway
 - Coagulation initiated by Tissue Factor (generated by damaged tissue) interacting with factor VII
 - Intrinsic pathway
 - Coagulation initiated by contact with surface agents (e.g., collagen, kallikrein) acting through factor XII (Hageman factor)
 - Currently thought to have minor role for in vivo coagulation
 - Activation of factor XI and coagulation stimulation is seen mainly after severe injury (e.g., trauma)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

Hemostasis / Thrombosis

- Details of the intrinsic pathway
 - Coagulation initiated by tissue factor generated on cells’ surface adjacent to vessels and exposed following injury to the vessel wall
 - Tissue factor + VIIIa - - - > activate IX and also X
 - IXa + VIIIa and Ca+ act on platelet phospholipid surface (pps) - - > X - - - > Xa
 - VIII = parts C (coag. pathway and vWF [co-factor activated by thrombin])
 - Xa - - - > complex on pps with Va and Ca+ - - - > prothrombin - - - > thrombin
 - Thrombin cleaves fibrinogen into fibrin and fibrinopeptides A,B
 - Thrombin activates XII - - - > crosslinkage of fibrin - - - > thrombus
 - Thrombin activates XI, VIII, V
 - Thrombin acts on endothelial cells and promotes vasoconstrictive factors and plasminogen activator

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
37. Vascular Hemodynamics: Slide 37

![Image](image_url)

Source: TUSDM

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

38. Hemostasis / Thrombosis

Hemostasis / Thrombosis

- **Products of the coagulation cascade usually restricted to site of vessel wall damage**
- **Plasma inhibitors limit the cascade**
 - Antithrombin III is most potent especially via action of heparin
 - Protein C
 - Vitamin K dependent
 - Activated by thrombin + thrombomodulin + protein S → destroy Va and VIIIa
 - Allows fibrinolysis
- **Fibrinolysis**
 - Due to formation plasminogen → protease plasmin via plasminogen activators, tPA and uPA [no longer inhibited by plasminogen activator inhibitor 1 but protein C prevents this] → degrades fibrin → fibrinopeptides (fibrin degradation products with anticoagulant activity)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
39. Fibrinolytic System

![Fibrinolytic System Diagram]

Fibrinolytic System

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

40. Hemostasis / Thrombosis

Hemostasis / Thrombosis

- Thrombosis events (thrombogenesis) – results from interaction of platelets, damaged endothelial cells and the coagulation cascade
 - Aggregation of platelets held together with a meshwork of fibrin occurs constantly to plug small defects in blood vessel walls
 - Once vessel wall repaired the small platelet/fibrin thrombus is normally removed via fibrinolysis
 - Multienzyme process that destroys fibrin filament meshwork allowing dissolution of the thrombus
 - Excessive thrombosis is prevented by several physiological mechanisms but in pathological thrombosis the thrombus formation proceeds beyond the capacity of the endogenous fibrinolysins to eradicate the thrombus - -> thrombus enlarges by deposition of fresh layers (laminated) of platelets and fibrin until lumen of vessel may be reduced

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
41. Vascular Hemodynamics: Slide 41

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

42. Vascular Hemodynamics: Slide 42

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
43. Platelet Adhesion – Early / Fibrin Deposition - Late...

Platelet Adhesion – Early / Fibrin Deposition - Late

Images not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

44. Vascular Hemodynamics: Slide 44

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Thrombosis

Prevention of thrombosis
- The normal endothelial cells act to prevent activation of the coagulation cascade generating factors that bring about fibrin lysis
 - **Intact endothelium** prevents platelets from contacting collagen and von Willebrand factor (cause platelet aggregation and degranulation)
 - **Prostacyclin and nitric oxide** prevent adhesion and aggregation of platelets to the endothelium
 - **Thrombomodulin on the endothelial surface** binds to local fibrin formed
 - --→ **thrombomodulin/thrombin complex** initiates anticoagulant effects of vitamin K dependent factor protein C and its cofactor protein S
 - (active protein C destroys factors V and VIII)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

Normal endothelial cells (cont’d)
- Produces heparin-like molecules which inhibit elements of the cascade
- Synthesizes plasminogen activators which produce plasmin - - - -→ lyses fibrin and inactivates part of the cascade
- Heparin potentiates antithrombin III a potent inhibitor of coagulation
47. Thrombosis

Thrombosis

3 main factors predispose to thrombus formation
- Endothelial dysfunction
 - Direct injury (trauma and inflammation; atheroma)
- Changes in the flow pattern of blood
 - Stasis allows platelets to come into contact with endothelium and prevents dilution of activated coagulation products
- Changes in the potential blood coagulability
 - Increase in the concentration of fibrinogen in acute phase responses
 - Congenital lack of protein C, protein S, antithrombin III
 - Antiphospholipid antibodies
 - Leiden mutation – factor V

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

48. Thrombosis

Thrombosis

- Thrombi in different parts of the circulation have different causative factors and different macroscopic appearances
 - Fast moving blood in arteries and heart chambers have high platelet/fibrin content so are very firm, pale, prominent laminations
 - Slow moving venous blood have a high proportion of entrapped RBCs relative to platelet / fibrin so are red, soft, gelatinous with poor laminations

- Occlusive thrombi
 - Small and medium sized vessels completely occluded

- Mural thrombi
 - In the heart or aorta without complete occlusion
 - Vegetations – thrombi on heart valves

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
49. Vascular Hemodynamics: Slide 49

<table>
<thead>
<tr>
<th>Site</th>
<th>Predisposition to Thrombosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artery</td>
<td>Atheroma, aneurysms</td>
</tr>
<tr>
<td>Heart valve</td>
<td>Inflammation caused by infection</td>
</tr>
<tr>
<td>Ventricle</td>
<td>Inflammation following infarction</td>
</tr>
<tr>
<td></td>
<td>Ventricular aneurysm</td>
</tr>
<tr>
<td>Atrium</td>
<td>Atrial fibrillation (→ stasis)</td>
</tr>
<tr>
<td></td>
<td>Mitral valve stenosis</td>
</tr>
<tr>
<td>Vein</td>
<td>Slow flow</td>
</tr>
<tr>
<td></td>
<td>Changes in coagulability of blood</td>
</tr>
<tr>
<td>Cerebral venous sinus</td>
<td>Inflammation following infection</td>
</tr>
<tr>
<td></td>
<td>Change in coagulability of blood</td>
</tr>
</tbody>
</table>

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

50. Thrombosed (occlusive) Artery

Thrombosed (occlusive) Artery

Image not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
51. Heart Valve Vegetations (thrombi)

Heart Valve Vegetations (thrombi)

Images not available due to copyright restrictions.

52. Mural Thrombi

Mural Thrombi

Images not available due to copyright restrictions.

Left ventricle apex Dilated abdominal aorta

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
53. Thrombosis

Thrombosis

4 main outcomes of occlusive thrombi

- Propagation
 - May enlarge along the vessel or undergo lysis by the fibrinolytic system
- Organization
 - Ingrowth of granulation tissue from the vessel wall
- Recanalization
 - Gradual replacement by granulation tissue and new vascular channels develop bridging the site of occlusion and re-establishing flow
- Thromboembolism
 - Fragments break off thrombus and carried by the circulation to impact other vessels

54. Organization and Recanalization of Thrombus

Organization and Recanalization of Thrombus

Images not available due to copyright restrictions.

Recanalized coronary artery lumen previously blocked by thrombus

Granulation tissue with many small blood vessels completely replace occlusive thrombus

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
55. Organization and Recanalization of Thrombus

Organization and Recanalization of Thrombus

Source: TUSDM

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

56. Embolism

Embolism

- Occlusion of a vessel by a mass of material (i.e., embolus) that is transported in the bloodstream
 - Most common type due to fragments of circulating thrombus (thromboemboli)
 - Fragments break off site of formation to enter blood circulation where it travels until it meets a blood vessel with a lumen too small to permit further passage
 - If in systemic veins -> heart -> pulmonary thromboembolism
 - If in heart -> aorta -> systemic arterial -> arteries of brain, kidneys, spleen, gut and lower limbs
 - Common carotid arteries -> cerebral arteries
 - Abdominal aorta -> renal arteries and arteries of lower limbs

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
57. Embolism

Embolism

- **Pulmonary thromboembolism**
 - Most common preventable cause of sudden death in a hospital patient
 - Most commonly caused by thrombosis of deep leg vein (calf, popliteal, femoral, iliac veins) → pulmonary a. ("saddle embolus" = straddles bifurcation) → hemorrhagic pulmonary infarct

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

58. Vascular Hemodynamics: Slide 58

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
59. Large Pulmonary Artery Embolus

Large Pulmonary Artery Embolus

Image not available due to copyright restrictions.

60. Embolism

Embolism

• Pulmonary thromboembolism (cont’d)
 ❖ Other sources of pulmonary thromboemboli:
 • Very rarely peri-prostatic venous plexus in males; small pelvic veins in women
 ❖ Clinical predisposers
 • Immobility and bed rest; postoperative period, pregnancy and post partum, oral contraceptives with high estrogen, nephrotic syndrome, severe burns, trauma, cardiac failure, disseminated malignancy
 ❖ Two main consequences
 • Increase in pulmonary arterial pressure (strains right side of heart)
 • Ischemia of the lungs
61. Embolism

Embolism

- **4 types of pulmonary thromboembolism:**
 - **Massive** pulmonary embolism (5%)
 - If 60% of pulmonary vasculature suddenly blocked then the heart cannot pump blood through the lungs - - -> cardiovascular collapse - - -> beat with no output - - -> rapid death
 - **Major** pulmonary embolism (10%)
 - Blockage of middle-sized pulmonary arteries
 - Breathlessness; infarction of lungs (10%); hemoptysis; pleuritic chest pain; can lead to massive type if untreated

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

62. Embolism

Embolism

- **4 types of pulmonary thromboembolism (cont’d)**
 - **Minor** pulmonary embolism (85%)
 - Blockage of small peripheral vessels by small emboli
 - Asymptomatic or breathlessness, pleuritic chest pain; can lead to massive type if untreated
 - **Recurrent minor** pulmonary embolism
 - Very rare; blockage of many small vessels over many months - - -> pulmonary hypertension

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
63. Embolism

Embolism

- **Pulmonary embolus – key facts**
 - Usually follows thrombosis in leg veins, often deep calf veins
 - Small pulmonary emboli impact peripheral branches of the pulmonary artery and cause pulmonary infarcts
 - Large pulmonary emboli may impact in and obstruct a major pulmonary artery to cause sudden death
 - A small pulmonary embolus (premonitory embolus) may be followed by a much larger fatal embolus
 - Prevention of leg vein thrombosis is the best way to prevent pulmonary embolus

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

64. Embolism

Embolism

- **Arterial emboli**
 - Sites of origin
 - Usually a mural thrombus (adherent to wall of a heart chamber or major artery)
 - Mural thrombus of right atrium associated with mitral stenosis or with atrial fibrillation
 - Mural thrombus of left ventricle caused by MI
 - At junction of internal and external carotid artery
 - Cause thrombotic brain infarcts (ischemic stroke)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Embolism

- Arterial emboli (cont’d)
 - Sites of arrest
 - Branches of carotid artery - - - > middle cerebral a. - - - > cerebral infarction
 - Branches of mesenteric artery - - - > hemorrhagic infarct of intestine
 - Branches of renal artery - - - > wedge-shaped pale infarct of renal cortex
- Paradoxical emboli
 - Left-sided that originate in venous circulation but gain access to arterial circulation through a left to right shunt (e.g., patent foramen ovale, atrial septal defect)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

Embolism

Bone Marrow Embolus (fat embolism) following skeletal injury

Image not available due to copyright restrictions.

- Other types (forms) of emboli
 - Malignant tumor
 - Through wall of vein/venule - - - > venous system - - - > distant site
 - Fat and bone marrow
 - Severe fracture to bones and adipocytes enter circulation - - - > venous - - - > right heart - - - > pulm. art. - - - > lungs or - - - > systemic - - - > brain, kidneys - - - > coma and death

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
67. Embolism

Embolism

- **Other types (forms) of emboli (cont’d)**
 - **Air**
 - Accidental pumping of air into venous circulation during IV injection or transfusion
 - Decompression sickness when nitrogen bubbles reform and occlude small vessels → musculoskeletal pain (the bends) and small infarcts (caisson disease) of CNS, bones → anoxia, death
 - **Therapeutic**
 - Wire, gelfoam, glue, balloons for inoperable vascular malformations

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

68. Embolism

Embolism

- **Other types (forms) of emboli (cont’d)**
 - **Amniotic fluid**
 - During childbirth, some enters maternal circulation through exposed and bleeding placental bed in the uterus → venous → lungs → alveolar wall damage and DIC → maternal death
 - **Miscellaneous**
 - Atherosclerotic plaques
 - Clumps of inflamed infected tissue

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Infarction

- Necrosis resulting from ischemia; infarct = necrotic tissue
 - Failure of adequate blood supply to a tissue causes cell damage through ischemia
 - Tissue necrosis due to interference with local blood flow → coagulative necrosis
 - Major cause of morbidity and mortality
 - Myocardial infarction, cerebral infarction, pulmonary infarction, gangrene of lower limb, bowel infarction

Infarction

- Most occur due to obstruction of arterial supply to a tissue; some due to interference to the venous drainage
 - When caused by artery blockage then shaped according to the territory of supply of the blocked vessel
 - Occlusion of small vessels results in wedge-shaped infarct with the occluded vessel at the apex
 - Two types:
 - Red infarcts
 - White infarcts
71. White Infarcts / Red Infarcts

White Infarcts / Red Infarcts

Images not available due to copyright restrictions.

72. Infarction

Infarction

- Hemorrhagic infarcts – “red” (RBCs ooze into necrotic tissue)
 - Characteristically occur in the lung and GI tract
 - Loose, well vascularized with redundant arterial blood supplies and hemorrhage into the infarct occurs from the nonobstructed portion of the vasculature

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
73. Infarction

Infarction

- **White infarcts**
 - Characteristically occur in heart, brain, kidney and liver
 - Damaged area initially poorly defined, pale and swollen; 48 hrs. better demarcated, pale and yellow - -> acute inflammation with red hyperemic border - - -> at 10 days ingrowth of granulation tissue and organization are advanced - - -> ultimately replaced by collagenous scarring

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

74. Infarct Infarct – Red (lung) and Pale (spleen)

Infarct Infarct – Red (lung) and Pale (spleen)

Image not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Renal Infarcts

Images not available due to copyright restrictions.

Infarction

- Venous infarcts
 - Usual cause is torsion of vascular pedicle of an organ and also in brain (venous sinus occlusion by thrombosis)
 - Blockage of venous drainage because tissue becomes suffused by blood
 - Blood unable to drain from tissues via veins but arterial blood arrives - - -> congestion - - -> rapid rise in pressure - - -> vessel wall rupture - - -> arterial blood cannot enter - - -> necrosis
 - Deeply congested and unoxygenated blood so almost black (hemorrhagic infarction)
77. Venous Infarctions

Venous Infarctions

Images not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

78. Slow Occlusion of a Vessel

Slow Occlusion of a Vessel

• Results in:
 ▶ Development of a collateral circulation (but not in areas supplied by a single artery)
 OR
 ▶ Tissue undergoes ischemic atrophy (not infarction)
 • Specialized cells shrink - - -> hyaline pink-staining amorphous support tissue

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
79. **Infarction**

Infarction

- **Infarction key facts**
 - Infarction is death of tissue due to anoxia following abrupt interference with the blood supply
 - Arterial infarction
 - Sudden obstruction to the arterial supply to a tissue or organ
 - Venous infarction
 - Sudden and persistent obstruction to venous drainage of an organ or tissue

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

80. **Vascular Hemodynamics**

- **Shock**
 - Clinical state associated with generalized (systemic) failure of tissue perfusion due to reduction in tissue blood flow and manifested by hypotension
 - Circulatory collapse with decreased oxygenation of tissues

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Vascular Hemodynamics

• Shock – cont’d
 ❖ Causes
 • Severe failure of pumping mechanism of heart
 (cardiogenic shock)
 – Decreased cardiac output (left ventr. failure)
 • Blockage of major arteries (obstructive shock)
 • Lack of blood to pump (hypovolemic shock) - hemorrhage
 • Abnormal dilatation of peripheral vessels causing lack of
 venous return of blood (septic shock/endotoxic shock,
 anaphylactic shock, neurogenic shock)

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

Vascular Hemodynamics

• Types of shock
 ❖ Cardiogenic
 • Circulatory collapse from pump failure of the left
 ventricle most often caused by massive myocardial
 infarction
 ❖ Hypovolemic
 • Acute reduction in circulating blood volume caused
 by severe hemorrhage or massive loss of fluid from
 the skin from extensive burns or from severe trauma
 OR
 • Loss of fluid from GI tract through severe vomiting or
 diarrhea

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Vascular Hemodynamics

• Types of shock – cont’d
 ❖ Septic
 • Most often associated with gram (-) infections - - - - - - gram (-) endotoxemia
 – Lipopolysaccharide endotoxin - - - cytokines - - - direct toxic injury to vessels - - - coagulation pathway and DIC OR
 – Superantigens - - - toxic shock syndrome (esp. Staph aureus)
 • Initial vasodilation - - - increased blood flow - - - signif. peripheral pooling - - - relative hypovolemia and impaired perfusion

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

Stages of shock
 – Nonprogressive (early) stage
 • Compensatory mechanisms maintain perfusion of vital organs
 – Increased heart rate and increased peripheral resistance
 – Progressive stage
 • Tissue hypoperfusion and onset of circulatory and metabolic imbalance, including metabolic acidosis
 • Compensatory mechanisms are no longer adequate
 – Irreversible stage
 • Severe organ damage and metabolic disturbances --- - survival not possible

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Vascular Hemodynamics

Events

– At first, protective mechanisms operate to maintain perfusion of vital organs
 • Renin-angiotensin-aldosterone system
 – ADH secretion increased → sodium and water retention increases blood volume
 • Increased catecholamine production by adrenals
 • Increased sympathetic activity → tachycardia and vasoconstriction

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS

Vascular Hemodynamics

Events – cont’d

– With persistence, systemic acidosis develops → dilatation of previously constricted vessels → blood pressure falls → blood diverted from gut and kidneys to maintain perfusion of heart and brain → urine output falls → damage to renal epi cells and gut stasis with epithelial lining necrosis → necrosis of liver, heart, brain → death with multiple organ failure

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Vascular Hemodynamics

- **Morphologic manifestations**
 - Acute tubular necrosis of kidney – most imp't.
 - Potentially reversible with appropriate medical management
 - Areas of brain necrosis
 - Centrilobular necrosis of the liver
 - Fatty changes of heart or liver
 - Patchy mucosal hemorrhages in the colon
 - Depletion of lipid in the adrenal cortex
 - Pulmonary edema

Clinical

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Early shock</th>
<th>Late shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>Pale and cold</td>
<td>Cyanosed</td>
</tr>
<tr>
<td>Kidneys</td>
<td>Low urine production</td>
<td>Necrosis of tubular epithelium</td>
</tr>
<tr>
<td>Gut</td>
<td>Bowel stasis</td>
<td>Necrosis of lining epithelium</td>
</tr>
<tr>
<td>Lung</td>
<td>Tachypnea</td>
<td>Necrosis of alveolar epithelium</td>
</tr>
<tr>
<td>Liver</td>
<td>Fatty change</td>
<td>Necrosis of centrilobular cells</td>
</tr>
<tr>
<td>Brain</td>
<td>Reduced conscious level</td>
<td>Necrosis of neurons, coma</td>
</tr>
<tr>
<td>Heart</td>
<td>Tachycardia</td>
<td>Myocardial necrosis</td>
</tr>
</tbody>
</table>

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS
Symptoms of Shock

Image not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS/Lynn W. Solomon, DDS