1. Basic Human Pathology Lecture #1 Cellular Adaptations to Disease / Cell Injury & Death I

Basic Human Pathology Lecture #1
Cellular Adaptations to Disease / Cell Injury & Death I

2007
Michael A. Kahn, DDS, Professor and Chairman
Lynn W. Solomon, DDS, MS, Assistant Professor
Department of Oral and Maxillofacial Pathology
Tufts University School of Dental Medicine

(c) 2007, Michael A. Kahn, DDS

2. Definitions

Definitions

• Pathology
 – ‘The study of disease’
 • Clinical pathology
 – Laboratory procedures
 • Anatomic pathology
 – Structural abnormalities at the cellular and tissue level

• Etiology
 – The cause or causes of any disease.

• Pathogenesis
 – The mechanisms for the development of the disease.
3. Definitions (cont’d)

Definitions (cont’d)

- **Homeostasis**
 - The “steady state” that cells exist in normally
 - An equilibrium of the cells with their environment for adequate function
 - When disturbed there is a predisposal for the onset of pathology

(c) 2007, Michael A. Kahn, DDS

4. Review: Tissue, Cellular, and Plasma Membrane Anatomy and Te...

Review: Tissue, Cellular, and Plasma Membrane Anatomy and Terms

(c) 2007, Michael A. Kahn, DDS
5. Definitions

Definitions

- **Relationships exist between cells and with the vasculature**
- **Tissue changes may be from either of the following:**
 - Parenchyma
 - The specific, unique functioning tissue of an organ
 - Stroma
 - The connective tissue framework and blood vessels of an organ
 - Not specific to the organ

(c) 2007, Michael A. Kahn, DDS

6. Parenchyma and Stroma

Parenchyma and Stroma

Image not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS
7. Plasma Membrane

8. Reaction of Cells to Stimuli

Reaction of Cells to Stimuli

- **Adaptation to Environmental Stress**
 - Cells can adapt to stimuli by either hypofunctioning or hyperfunctioning.
 - A persistent sublethal injury can cause - - - - >
 - **Hypertrophy**
 - Increase in the size of an organ or tissue due to an increase in the size of the cells
 - Ex. - work hypertrophy of muscle
 - **Hyperplasia**
 - Increase in the size of an organ or tissue caused by an increase in the number of cells
 - Ex. – glandular proliferation in the breast during pregnancy
 - Can occur with hypertrophy
 - Ex. – uterine enlargement during pregnancy

(c) 2007. Michael A. Kahn, DDS
9. Hypertrophy - Masseter Muscle

Hypertrophy – Masseter Muscle

Image not available due to copyright restrictions.

10. Hypertrophy

Hypertrophy

Source: TUSDM

(c) 2007, Michael A. Kahn, DDS
11. Hypertrophy – Skeletal Muscle

Hypertrophy – Skeletal Muscle

Image not available due to copyright restrictions.

12. Left Ventricular Wall Hypertrophy of Cardiac Muscle –...

Left Ventricular Wall Hypertrophy of Cardiac Muscle –

Macroscopic and microscopic

Image not available due to copyright restrictions.
13. Hypertrophy – Cardiac Muscle

Hypertrophy – Cardiac Muscle

Images not available due to copyright restrictions.

Normal Hypertrophy

14. Nodular Hyperplasia – Prostate

Nodular Hyperplasia – Prostate

Macroscopic

Images not available due to copyright restrictions.

(c) 2007. Michael A. Kahn, DDS
15. Nodular Hyperplasia – Prostate

Nodular Hyperplasia – Prostate

Microscopic

(c) 2007, Michael A. Kahn, DDS

16. Hypertrophy and Hyperplasia

Hypertrophy and Hyperplasia

(c) 2007, Michael A. Kahn, DDS
Hypertrophy and Hyperplasia During Pregnancy

Uterine myometrium - macroscopic

Image not available due to copyright restrictions.

Physiological Hyperplasia –

Endometrium of Uterus During Menstruation

Macroscopic

Image not available due to copyright restrictions.
19. Physiological Hyperplasia – Endometrium of Uterus

Physiological Hyperplasia – Endometrium of Uterus

Microscopic

Image not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS

20. Developmental causes of reduced cell mass

Developmental causes of reduced cell mass

(c) 2007, Michael A. Kahn, DDS
21. Adaptation to Environmental Stress (cont’d) –

Adaptation to Environmental Stress (cont’d) –
Developmental Causes of Reduced Cell Mass

❖ Agenesis
 • Failure of formation of embryonic cell mass (anlage)

❖ Aplasia
 • Failure of differentiation to organ specific tissues
 • Ex. - kidney
 • Failure of cell production
 • During fetal development aplasia results in agenesis
 • Later in life, aplasia can be caused by permanent loss of precursor cells in proliferative tissues such as bone marrow

(c) 2007, Michael A. Kahn, DDS

22. Adaptation to Environmental Stress (cont’d) –

Adaptation to Environmental Stress (cont’d) –
Developmental Causes of Reduced Cell Mass

❖ Dysgenesis
 • Failure to undergo structural organization of tissues into an organ

❖ Hypoplasia
 • Decrease in cell production that is less extreme than that found in aplasia – failure of growth to full size
 • Ex. – Turner syndrome and Klinefelter syndrome
 • Partial lack of growth and maturation of gonadal structures

(c) 2007, Michael A. Kahn, DDS
23. Adaptation to Environmental Stress (cont’d)

Adaptation to Environmental Stress (cont’d)

❖ Atrophy

• Decrease in the size of an organ or tissue resulting from a decrease in the mass of pre-existing cells
• Results most often from disuse, nutritional or oxygen deprivation, diminished endocrine stimulation, aging, and denervation
• Often marked by presence of autophagic granules
 – Intracytoplasmic vacuoles containing debris from degraded organelles

(c) 2007, Michael A. Kahn, DDS

24. Autophagy and Cell Atrophy

Autophagy and Cell Atrophy

(c) 2007, Michael A. Kahn, DDS
25. Adaptation to Environmental Stress (cont’d)

Adaptation to Environmental Stress (cont’d)

- General atrophy - involves widespread atrophy of numerous tissues
 - Starvation atrophy
 - Senile atrophy
 - Reduced activity leads to reduction in size of the skeletal muscle fibers

(c) 2007, Michael A. Kahn, DDS

26. Adaptation to Environmental Stress

Adaptation to Environmental Stress

- Local atrophy
 - Disuse atrophy
 - From inactivity of an organ or part
 - Ex. - an arm in a cast results in loss of muscle due to lack of use
 - Pressure atrophy
 - From prolonged pressure on a local area
 - Ex. - bed ulcers; atrophy of the submandibular gland
 - Endocrine atrophy
 - From deprivation of hormonal stimulation
 - Ex. - lactating breast and uterus after menopause
 - Denervation atrophy
 - Ex. - damage to axons supply muscle; lack of stimulation

(c) 2007, Michael A. Kahn, DDS
27. Local Atrophy - Disuse

Local Atrophy - Disuse

Source: TUSDM

(c) 2007, Michael A. Kahn, DDS

28. Atrophy - Endocrine

Atrophy - Endocrine

Normal adrenal

Adrenal atrophy – ACTH ↓

Images not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS
29. **Atrophy**

Localized
- Cerebral atrophy in Alzheimer’s disease

Generalized
- Senile Atrophy

Images not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS

30. **Hemifacial Atrophy**

Hemifacial Atrophy

Source: TUSDM

(c) 2007, Michael A. Kahn, DDS
31. Adaptation to Environmental Stress (cont’d)

Adaptation to Environmental Stress (cont’d)

- **Involution**
 - Physiological decrease in the number of cells to their normal number
 - Ex. – thymus gland involutes during adolescence
 - Ex. – myometrium involutes during post partum

(c) 2007. Michael A. Kahn, DDS

32. Involution – Thymus Gland

Involution – Thymus Gland

Childhood Adult

Images not available due to copyright restrictions.

(c) 2007. Michael A. Kahn, DDS
Adaptation to Environmental Stress (cont’d)

Metaplasia

- Replacement of one differentiated tissue by another in a hostile environment

Squamous metaplasia

- Ex. - Change from columnar ciliated epithelium to squamous epithelium at the squamocolumnar junction of the cervix
- Associated with chronic irritation (e.g., bronchi with long term use of tobacco); vitamin A deficiency
- Often reversible

(c) 2007, Michael A. Kahn, DDS

Adaptation to Environmental Stress (cont’d)

Metaplasia – cont’d

- Osseous (cartilaginous) metaplasia
 - Formation of new bone (cartilage) at sites of tissue injury such as ill fitting dentures
- Myeloid metaplasia (extramedullary hematopoiesis)
 - Proliferation of hematopoietic tissue in sites other than the bone marrow, such as the liver or spleen
 - --> hepatosplenomegaly such as during sickle cell anemia

(c) 2007, Michael A. Kahn, DDS
35. Cellular Adaptations to Disease/Cell Injury and Death I: Slit...

<table>
<thead>
<tr>
<th>Original Tissue</th>
<th>Stimulus</th>
<th>Metaplastic Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciliated columnar epithelium of bronchial tree</td>
<td>Cigarette smoke</td>
<td>Squamous epithelium</td>
</tr>
<tr>
<td>Transitional epithelium of bladder</td>
<td>Trauma of bladder calculus</td>
<td>Squamous epithelium</td>
</tr>
<tr>
<td>Columnar epithelium in gland ducts</td>
<td>Trauma of calculus</td>
<td>Squamous epithelium</td>
</tr>
<tr>
<td>Fibrocollagenous tissue</td>
<td>Chronic trauma</td>
<td>Bone (osseous) tissue</td>
</tr>
<tr>
<td>Oesophageal squamous epithelium</td>
<td>Gastric acid</td>
<td>Columnar epithelium</td>
</tr>
<tr>
<td>Columnar glandular epithelium</td>
<td>Vitamin A deficiency</td>
<td>Squamous epithelium</td>
</tr>
</tbody>
</table>

(c) 2007. Michael A. Kahn, DDS

36. Respiratory Epithelium Prior to Metaplasia

Respiratory Epithelium Prior to Metaplasia

Image not available due to copyright restrictions.

(c) 2007. Michael A. Kahn, DDS
37. Cellular Adaptations to Disease/Cell Injury and Death I: Sli...

38. Esophageal Mucosa Metaplastic to Stratified Squamous Epithel...

Esophageal Mucosa Metaplastic to Stratified Squamous Epithelium

Image not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS
39. Ductal – Squamous Metaplasia

![Ductal – Squamous Metaplasia](image)

(c) 2007, Michael A. Kahn, DDS

40. Squamous Metaplasia

![Squamous Metaplasia](image)

Source: TUSD

Bladder - transitional epithelium to squamous epithelium

(c) 2007, Michael A. Kahn, DDS
41. Summary of Adaptation to Environmental Stress

Summary of Adaptation to Environmental Stress

<table>
<thead>
<tr>
<th>Change in size of cells</th>
<th>Reduction in the size of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrophy</td>
<td>Increase in the size of cells</td>
</tr>
<tr>
<td>Hypertrophy</td>
<td>Decrease in the number of cells</td>
</tr>
<tr>
<td>Change in number of cells</td>
<td>Increase in the number of cells</td>
</tr>
<tr>
<td>Involution</td>
<td>Stable change to another cell type</td>
</tr>
<tr>
<td>Hyperplasia</td>
<td></td>
</tr>
<tr>
<td>Change in differentiation of cells</td>
<td></td>
</tr>
<tr>
<td>Metaplasia</td>
<td></td>
</tr>
</tbody>
</table>

(c) 2007. Michael A. Kahn, DDS

42. Summary

Summary

(c) 2007. Michael A. Kahn, DDS
43. Cell Adaptation Key Facts

Cell Adaptation Key Facts

- Adaptable within physiological limits
- **Heat shock proteins** - can respond to injury by producing cell stress proteins, which protect from damage and help in recovery
- Increased demands met by hypertrophy and hyperplasia
- Reduced demand met by atrophy
- **Apoptosis** – cell loss from tissues can be achieved by programmed cell death
- Tissues can adapt to demand by a change in differentiation known as **metaplasia**

(c) 2007, Michael A. Kahn, DDS

44. Reaction of Cells to Injury

Reaction of Cells to Injury

- **Reversible injury (degeneration)**
 - Cell functions impaired but cell can recover
- **Irreversible injury**
 - Cessation of all cell functions with cellular death
 - **Apoptosis**
 - Programmed cell death
 - **Necrosis**
 - Sum of the degradative and inflammatory reactions occurring after tissue death

(c) 2007, Michael A. Kahn, DDS
45. Reaction of Cells to Injury on a Biochemical Level

Reaction of Cells to Injury on a Biochemical Level

- **Functional** (biochemical) changes occur before gross morphologic changes appear
- **Ultrastructural** changes occur before light microscopic changes appear
- **Light microscopic** changes occur before gross morphologic changes appear

(c) 2007, Michael A. Kahn, DDS

46. Reaction of Cells to Injury on a Biochemical Level

Reaction of Cells to Injury on a Biochemical Level

- **Ubiquitin**
 - Marks abnormal proteins for degradation
 - Ex. - heat shock proteins induced by stress
- **Chaperones**
 - Specialized protein
 - Required for proper folding and/or assembly of another protein or protein complex

(c) 2007, Michael A. Kahn, DDS
47. Function of Ubiquitin in Cell Stress

Function of Ubiquitin in Cell Stress

Image not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS

48. Protein Kinesis

Protein Kinesis

Image not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS
49. Reaction of Cells to Injury on a Biochemical Level

Reaction of Cells to Injury on a Biochemical Level

• Disorders characterized by protein folding abnormalities
 - Two known pathogenetic mechanisms
 - Abnormal protein aggregation, examples:
 - Amyloidosis
 - Neurodegenerative diseases
 - (e.g., Alzheimer’s, Huntington’s disease, Parkinson’s, Prion disease)
 - Abnormal protein transport and secretion, examples:
 - Cystic fibrosis
 - Alpha 1-antitrypsin deficiency

(c) 2007, Michael A. Kahn, DDS

50. Reaction of Cells to Injury on a Biochemical Level

Reaction of Cells to Injury on a Biochemical Level

• Biochemical derangements
 - Oxygen-derived free radicals affect cell structure
 - ATP depletion
 - Needed for energy of all cell functions
 - Loss of calcium homeostasis
 - Calcium enters via membranes and also increases within the cell (cytosolic calcium)
 - Calcium activates enzymes capable of degrading cell membranes
 - Defects in membrane permeability
 - Sodium plus other accumulations change the osmotic balance
 - Water enters cells
 - Cloudy swelling

(c) 2007, Michael A. Kahn, DDS
51. Free Calcium’s Role as a Destructive Agent

52. Reversible Cellular Changes and Accumulations

- Hydropic degeneration (hydropic change)
 - Only the cytoplasm is involved
 - Water accumulates and the cell swells
 - Large vacuoles in the cytoplasm
 - Light microscopy
 - Cytoplasm is pink and granular
 - Electron microscopy (ultrastructural)
 - Organelles are swollen
 - Ribosomes displaced
 - Lysosomal activity very apparent
53. Hydropic Change

Hydropic Change

Source: TUSDM

Kidney - microscopic

(c) 2007. Michael A. Kahn, DDS

54. Hydropic Change - Leukoedema

Hydropic Change - Leukoedema

Source: TUSDM

Oral epithelium - microscopic

(c) 2007. Michael A. Kahn, DDS
55.

Hydropic Degeneration - Leukoedema

Oral epithelium - macroscopic

Source: TUSDM

(c) 2007, Michael A. Kahn, DDS

56.

Reversible Change – Cell Degeneration

Basal Cell Layer of epithelium

Source: TUSDM

(c) 2007, Michael A. Kahn, DDS
57. Reversible Cellular Changes and Accumulations

Reversible Cellular Changes and Accumulations

- Fatty change (steatosis, fatty metamorphosis)
 - Characterized by accumulation of intracellular parenchymal triglycerides; nucleus is displaced and the cell swells
 - Observed frequently in liver, heart, and kidney
 - Ex. – in liver secondary to alcoholism, diabetes mellitus, malnutrition, obesity, poisoning
- Results from imbalance among the uptake, utilization, and secretion of fat
 - Increased transport of triglycerides (fatty acids) to affected cells
 - Decreased mobilization of fat from cells
 - Most often due to decreased production of apoproteins for fat transport
 - Decreased use of fat by cells
 - Overproduction of fat in cells

(c) 2007, Michael A. Kahn, DDS

58. Fatty Change

Fatty Change

Liver microscopic

Source: TUSD

(c) 2007, Michael A. Kahn, DDS
59. Fatty Change

Fatty Change

Image not available due to copyright restrictions.

Normal / Fatty change

Source: TUSDM

(c) 2007. Michael A. Kahn, DDS

60. Fatty Change - Liver

Fatty Change - Liver

Source: TUSDM

(c) 2007. Michael A. Kahn, DDS
61. Fatty Change - Liver

62. Reversible Cellular Changes and Accumulations

- **Hyaline change**
 - Homogeneous, glassy, eosinophilic appearance in H&E stained tissue sections
 - Caused most often by nonspecific accumulations of proteinaceous material
 - Ex. - glomeruli tufts in diabetic glomerulosclerosis
63. Reversible Cellular Changes and Accumulations

Reversible Cellular Changes and Accumulations

- Accumulation of exogenous pigments
 - Naturally colored substances not requiring tissue stain to be seen
 - Pulmonary accumulations of carbon, silica, and iron dust
 - Plumbism (lead poisoning)
 - Algeria (silver poisoning)
 - May cause a permanent gray discoloration of the skin and conjunctiva

(c) 2007. Michael A. Kahn, DDS

64. Hyaline Change – Liver Cell

Hyaline Change – Liver Cell

Mallory Bodies

Image not available due to copyright restrictions.

(c) 2007. Michael A. Kahn, DDS
Reversible Cellular Changes and Accumulations

- Accumulation of endogenous pigments
 - Melanin
 - Most common; brown pigment
 - Formed from tyrosine via tyrosinase
 - Synthesized in melanosomes of melanocytes within the basement membrane of the epidermis and choroid of the eye
 - Transferred by melanocytes to adjacent clusters of keratinocytes and macrophages (melanophores) in the subjacent dermis

(c) 2007. Michael A. Kahn, DDS

Reversible Cellular Changes and Accumulations

- Accumulation of endogenous pigments
 - Melanin
 - Seen also in neoplasms
 - Ex. - melanocytic nevus, melanotic macule
 - Ex. - melanoma

(c) 2007. Michael A. Kahn, DDS
67. Labial Melanotic Macule – Focal Melanosis

Labial Melanotic Macule – Focal Melanosis

Source: TUSDM

(c) 2007, Michael A. Kahn, DDS

68. Melanin Pigmentation – Labial Melanotic Macule

Melanin Pigmentation – Labial Melanotic Macule

Source: TUSDM

(c) 2007, Michael A. Kahn, DDS
Reversible Cellular Changes and Accumulations

Bilirubin
- Catabolic product of the heme moiety of hemoglobin and myoglobin
 - In pathologic conditions, accumulates and stains the blood, sciera, mucosa, and internal organs producing a yellow discoloration (jaundice)
 - **Hemolytic jaundice**
 - Destruction of red blood cells
 - **Obstructive jaundice**
 - Intra- or extrahepatic obstruction of the biliary tract
 - **Hepatocellular jaundice**
 - Parenchymal liver damage

(c) 2007, Michael A. Kahn, DDS

Reversible Cellular Changes and Accumulations

Hemosiderin
- Iron-containing pigment; aggregates of ferritin
- In tissue appears as golden-brown amorphous aggregates
 - **Prussian blue dye – positive blue color stain reaction**
- Exists normally in small amounts as physiologic iron stores within tissue macrophages of the bone marrow, liver, and spleen

(c) 2007, Michael A. Kahn, DDS
71. Hemosiderin in Liver Cells

Hemosiderin in Liver Cells

Image not available due to copyright restrictions.

72. Hemosiderin – Lung Alveoli

Hemosiderin – Lung Alveoli

Source: TUSDPM

(c) 2007, Michael A. Kahn, DDS
73. Reversible Cellular Changes and Accumulations

Reversible Cellular Changes and Accumulations

- **Hemosiderin**
 - **Found in**
 - Week-old hemorrhage
 - Hemolysis
 - Inborn errors of metabolism affecting transport and absorption as in the liver and pancreas
 - Accumulates pathologically in tissue in excess amounts (sometimes massive)
 - Hemosiderosis vs. hemochromatosis

74. Reversible Cellular Changes and Accumulations

Reversible Cellular Changes and Accumulations

- **Hemosiderosis**
 - Accumulation of hemosiderin, primarily within tissue macrophages, without associated tissue or organ damage
 - **Local** - most often from hemorrhage into tissue; derived from breakdown of hemoglobin
 - **Systemic** - generalized; from hemorrhage, multiple blood transfusions, hemolysis, excessive dietary intake; often accompanied by alcohol consumption
Reversible Cellular Changes and Accumulations

Hemochromatosis

- Extensive accumulation of hemosiderin, often within parenchymal cells, with accompanying tissue damage, scarring, and organ dysfunction
- Hereditary type (primary)
 - Most often caused by mutation of Hfe gene, chromosome #6
 - Characterized by liver, pancreas, myocardium, and multiple endocrine glands damage; melanin deposition in skin
 - Triad – micronodular cirrhosis, diabetes mellitus, “bronze diabetes”
 - Elevated serum iron, decreased total iron-binding capacity

(c) 2007. Michael A. Kahn, DDS

Reversible Cellular Changes and Accumulations

Hemochromatosis – cont’d

Secondary type

- Most often caused by multiple blood transfusions for conditions such as Beta-thalassemia major (a hereditary hemolytic anemia)

(c) 2007. Michael A. Kahn, DDS
77. Hemochromatosis - Pancreas

Hemochromatosis - Pancreas

Image not available due to copyright restrictions.

77
(c) 2007, Michael A. Kahn, DDS

78. Reversible Cellular Changes and Accumulations

Reversible Cellular Changes and Accumulations

❖ Lipofuscin

- Yellowish to light brown, fat-soluble pigment; end product of membrane lipid peroxidation
- “Wear and tear” pigment
- Commonly accumulates in elderly patients
 - Found most often within hepatocytes and at the poles of nuclei of myocardial cells

❖ Brown atrophy

- Accumulation of lipofuscin and atrophy of organs

78
(c) 2007, Michael A. Kahn, DDS
79. Lipofuscin – Striated Muscle and Liver

Lipofuscin – Striated Muscle and Liver

Source: TUSDM

Microscopic

Cardiac muscle

Liver

(c) 2007, Michael A. Kahn, DDS

80. Reversible Cellular Changes and Accumulations

Reversible Cellular Changes and Accumulations

• Pathologic calcifications
 – Abnormal deposition of calcium salts in soft tissue
 – Deep blue-purple in nondecalcified H&E stained tissue
 – May stimulate further bone deposition

(c) 2007, Michael A. Kahn, DDS
81. Pathologic Calcifications

Pathologic Calcifications

- **Metastatic calcifications**
 - **Caused by hypercalcemia**
 - Most often from hyperparathyroidism
 - Osteolytic tumors with mobilization of Ca\(^{2+}\) and PO\(_4^-\)
 - Hypervitaminosis D
 - Excess calcium intake
 - E.g., milk-alkali syndrome – nephrocalcinosis, renal stones caused by milk and antacid self-therapy for peptic ulcer

82. Metastatic Calcification Hypercalcemia - Lung

Metastatic Calcification
Hypercalcemia - Lung

Source: TUSDM
(c) 2007, Michael A. Kahn, DDS
83. Pathologic Calcifications

Pathologic Calcifications

❖ Dystrophic calcifications
 • Intracellular or extracellular; gritty
 • Deposition of calcium in tissue altered by injury
 – Areas of old trauma
 – Tuberculosis lesions
 – Affects crucial organs, heart valves, vessels
 » Scarred heart valves
 » Atherosclerosis
 ❖ Not caused by hypercalcemia but calcium attracted by released membrane phosphates
 – Serum calcium concentration normal

(c) 2007, Michael A. Kahn, DDS

84. Calcific Stenosis of Aortic Valve

Calcific Stenosis of Aortic Valve

Image not available due to copyright restrictions.

(c) 2007, Michael A. Kahn, DDS
85. Dystrophic Calcification – Medial Sclerosis

86. Dystrophic Calcification – Medial Sclerosis
87. Dystrophic Calcification – Stomach Injury

Dystrophic Calcification – Stomach Injury

Source: TUSDM

(c) 2007, Michael A. Kahn, DDS

88. Dystrophic Calcification – Periapical and Pulpal Pathoses

Dystrophic Calcification – Periapical and Pulpal Pathoses

Source: TUSDM

(c) 2007, Michael A. Kahn, DDS