1. GI Pharmacology - Acid Suppression: Antacids, Acid Suppressa...

GI Pharmacology
Acid Suppression: Antacids, Acid Suppressants, and Prokinetics

Paul Abourjaily, PharmD
Tufts-New England Medical Center
2007

2. Objectives

Objectives

- Illustrate drug mechanisms of action
- Identify most common drug side effects
- Describe goals of therapy
3. Physiology of Gastric Acid Secretion

Physiology of Gastric Acid Secretion

- Parietal cell
 - Primary acid producing cell
 - Located in body & fundus of stomach
 - H⁺/K⁺ ATPase pump
 - Generates largest ion gradient known in vertebrates
 - Influenced by:
 - Acetylcholine, Histamine, Gastrin, Prostaglandins

(c) 2007, Paul Abourjaily, PharmD

4. Physiology of Gastric Acid Secretion

(c) 2007, Paul Abourjaily, PharmD
5. Physiology of Gastric Acid Secretion

Physiology of Gastric Acid Secretion

- Normal stomach pH:
 - Basal acid: approximately 1-2
 - Post prandial: 4-5 (x 1 hour)
 - Which in turn stimulates greater acid production

(c) 2007, Paul Abourjaily, PharmD

6. Gastric Defense

Gastric Defense

- Tight junctions
 - Between gastric epithelial cells
- Mucin layer
 - Overlying cells
- Bicarbonate ion
 - Secreted into mucin layer
- Prostaglandins
 - Stimulate mucus production, bicarb, mucosal blood flow

(c) 2007, Paul Abourjaily, PharmD
7. Drugs For Control of Gastric Acidity

Drugs For Control of Gastric Acidity

- Antacids
- Cytoprotectants
- H-2 receptor antagonists
- Proton pump inhibitors

8. Antacids

Antacids

- Mechanism:
 - Local neutralization of acid

- Components:
 - Aluminum hydroxides; Al(OH)₃
 - Magnesium hydroxides; Mg(OH)₂
 - Calcium carbonate; CaCO₃
 - Sodium bicarbonate; NaHCO₃
9. Antacids

Antacids

• Adverse effects:
 – Diarrhea - Mg$^{2+}$
 – Constipation - Al$^{3+}$
 – Abdominal distension, reflux - CaCO$_3$

• Cautions:
 – Renal insufficiency
 – Drug interactions

(c) 2007, Paul Abourjaily, PharmD

10. Antacids

Antacids

• Milk-alkali syndrome
 – NaHCO$_3$ and/or CaCO$_3$ + dairy products
 – Excess Ca$^{2+}$ & absorbable alkali
 • Hypercalcemia
 • Reduced PTH
 • Phosphate retention
 • Calcium precipitates in kidney

(c) 2007, Paul Abourjaily, PharmD
11. Antacid Examples

Antacid Examples
(mg per tablet or 5 mL)

<table>
<thead>
<tr>
<th>Product</th>
<th>Al(OH)₃</th>
<th>Mg(OH)₂</th>
<th>CaCO₃</th>
<th>Simethicone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mylanta</td>
<td>0</td>
<td>150</td>
<td>350</td>
<td>0</td>
</tr>
<tr>
<td>Mylanta ES</td>
<td>400</td>
<td>400</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Maalox Max Str</td>
<td>400</td>
<td>400</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>MOM</td>
<td>0</td>
<td>400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tums</td>
<td>0</td>
<td>0</td>
<td>750</td>
<td>0</td>
</tr>
</tbody>
</table>

(c) 2007, Paul Abourjaily, PharmD

12. Cytoprotectants

Cytoprotectants

- Sucralfate
- Misoprostol
- Bismuth compounds

(c) 2007, Paul Abourjaily, PharmD
13. Physiology of Gastric Acid Secretion

![Diagram of Physiology of Gastric Acid Secretion](image)

14. Cytoprotectants

Cytoprotectants

- **Sucralfate**
 - Sulfated polysaccharide
 - Also contains Al(OH)$_3$
 - Adheres to epithelial cells and ulcer craters
 - Activated by acidic environment
 - Lasts up to 6 hours
15. Sucralfate

Sucralfate

- Typical dose:
 - 1g by mouth 2-4 x/day
 - 30 min prior to eating

- Uses:
 - Acid-peptic disease
 - Role diminished in recent years
 - Stress ulcer prophylaxis

(c) 2007, Paul Abourjaily, PharmD

16. Sucralfate

Sucralfate

- Adverse effects:
 - Constipation - most common (2%)
 - Accumulation of Al\(^{3+}\)
 - Caution if renal insufficiency
 - Drug interactions
 - Separate:
 - Usually 2 hours after other drugs

(c) 2007, Paul Abourjaily, PharmD
17. Cytoprotectants

Cytoprotectants

• Misoprostol
 – Prostaglandin E1 analog
 • Stimulates secretion of mucin & bicarb
 • Increases mucosal blood flow
 • Suppresses acid production in parietal cell by binding to EP3 receptor

(c) 2007, Paul Abourjaily, PharmD

18. Misoprostol

Misoprostol

• Typical dose:
 – 100 - 200 mcg by mouth 2-4 x/day
 • With food

• Uses:
 – Prevent NSAID-related mucosal damage

(c) 2007, Paul Abourjaily, PharmD
19. Misoprostol

Misoprostol

- Adverse effects:
 - Diarrhea - up to 30%
 - With or without abdominal pain/cramps
 - Increased uterine contractility
 - Contraindicated in pregnancy
 - Used in combination with mifepristone or methotrexate for medical termination of pregnancy

20. Cytoprotectants

Cytoprotectants

- Bismuth compounds
 - Bind to base of ulcers
 - Also promote mucin & bicarb production
 - Have antibacterial effects
 - Example:
 - Bismuth subsalicylate
21. Bismuth subsalicylate

Bismuth subsalicylate

- Typical dose:
 - 2 tablespoonfuls or 2 tablets
 - Every 1/2-1 hour as needed
 - Max 4-8 doses/24 hours (reg vs max str)

- Adverse effects:
 - Darkening of tongue and/or stool
 - Constipation
 - Avoid if aspirin allergy

(c) 2007, Paul Abourjaily, PharmD

22. H2-Receptor Antagonists

H2-Receptor Antagonists

- Cimetidine
- Ranitidine
- Famotidine
- Nizatidine

(c) 2007, Paul Abourjaily, PharmD
23. Physiology of Gastric Acid Secretion

![Diagram of Physiology of Gastric Acid Secretion]

© 2007, Paul Abourjaily, PharmD

24. H2-Receptor Antagonists

H2-Receptor Antagonists

- **Mechanism:**
 - Compete with histamine for binding to H2 receptors on parietal cells

 More potent, longer-lasting effects than traditional antacids

(c) 2007, Paul Abourjaily, PharmD
25. H2-Receptor Antagonists

H2-Receptor Antagonists

- **Uses:**
 - Gastric & duodenal ulcers
 - Uncomplicated GERD
 - Stress ulcer prophylaxis

(c) 2007, Paul Abourjaily, PharmD

26. H2-Receptor Antagonists

H2-Receptor Antagonists

- **Typical doses:**
 - Cimetidine
 - 200 - 400 mg 2-4 x/day
 - Ranitidine
 - 150 mg 1-2 x/day
 - Famotidine
 - 20 mg 1-2 x/day
 - Nizatidine
 - 150 mg 1-2 x/day

H2As should be dose adjusted for renal insufficiency

(c) 2007, Paul Abourjaily, PharmD
27. **H2-Receptor Antagonists**

H2-Receptor Antagonists

- **Drug interactions:**
 - **Absorption:**
 - Drugs requiring acidic environment
 - Ketoconazole, Itraconazole, Didanosine
 - **Hepatic - Cimetidine**
 - Inhibitor of CYP-450:
 - Phenytoin, Theophylline, Warfarin

28. **H2-Receptor Antagonists**

H2-Receptor Antagonists

- **Adverse effects:**
 - **General:** Diarrhea, headache, drowsiness, fatigue, constipation
 - **Bone marrow suppression**
 - **CNS - seen more w/IV use**
 - Confusion, delirium, hallucinations, slurred speech
 - **Cimetidine**
 - Gynecomastia in men, galactorrhea in women
29. Proton Pump Inhibitors

Proton Pump Inhibitors

- Omeprazole
- Lansoprazole
- Rabeprazole
- Pantoprazole
- Esomeprazole

(c) 2007, Paul Abourjaily, PharmD

30. Physiology of Gastric Acid Secretion

Physiology of Gastric Acid Secretion

(c) 2007, Paul Abourjaily, PharmD
31. Proton Pump Inhibitors

Proton Pump Inhibitors

- **Mechanism:**
 - Prodrugs that require activation (protonation) in acidic environment
 - But parent compound unstable in acid
 - Enteric coated formulations usually required
 - Irreversibly bind to & inactivate $\text{H}^+\text{K}^+\text{ATPase}$

32. Proton Pump Inhibitors

Proton Pump Inhibitors

- **Pharmacokinetics**
 - Plasma half-life:
 - About 1-2 hours
 - Onset:
 - Full effects may take up to 2-5 days
 - Duration of effect:
 - Lasts 24-48 hours
33. Proton Pump Inhibitors

Proton Pump Inhibitors

• Uses:
 – Gastric & duodenal ulcers
 – GERD
 – Zollinger-Ellison syndrome

34. Proton Pump Inhibitors

Proton Pump Inhibitors

• Typical doses
 – Omeprazole or Esomeprazole
 • 20 - 40 mg/day
 – Lansoprazole
 • 15 - 30 mg/day
 – Rabeprazole
 • 20 mg/day
 – Pantoprazole
 • 20 - 40 mg/day
35. Proton Pump Inhibitors

Proton Pump Inhibitors

- Adverse effects:
 - Nausea, diarrhea, abdominal pain, constipation
 - Myopathy, arthralgia, headache
 - Skin rashes
 - Reduced vit B12 absorption
 - ECL cell hyperplasia (& gastric tumors?)
 - Hypergastrinemic state

(c) 2007, Paul Abourjaily, PharmD

36. Sites of Drug Action

(c) 2007, Paul Abourjaily, PharmD
37. Prokinetic Agents

Prokinetic Agents

- Cholinergic agents
 - Bethanechol
- Serotonin receptor modulators
 - Metoclopramide
 - Cisapride
 - Tegaserod
- Dopamine receptor blockers
 - Domperidone
 - Metoclopramide
- Motilin-like agents

(c) 2007, Paul Abourjaily, PharmD

38. Physiology of Gastric Motility

Physiology of Gastric Motility

(c) 2007, Paul Abourjaily, PharmD
39. Therapeutic Application

Therapeutic Application

- Ulcers due to *Helicobacter pylori*
 - Gram negative rod
 - Associated with gastritis
 - And subsequent gastric & duodenal ulcers
 - Maybe also some association with:
 - Gastric adenocarcinomas
 - Gastric B-cell lymphoma
 - Controversial

(c) 2007, Paul Abourjaily, PharmD

40. Urease Breath Test for H. pylori

(c) 2007, Paul Abourjaily, PharmD
Helicobacter pylori

Helicobacter pylori

- Treatment: Eradication
 - Multiple antimicrobials
 - Plus acid suppressive therapy

 - If nonulcer dyspepsia:
 - Eradication typically does not improve symptoms

(c) 2007, Paul Abourjaily, PharmD

Helicobacter pylori

Helicobacter pylori

- Potential regimens:
 - 2 to 3 of the following:
 - Amoxicillin 1000 mg (2x/day)
 - Clarithromycin 500 mg (2x/day)
 - Metronidazole 500 mg (2-3x/day)
 - Tetracycline 500 mg (4x/day)
 - Bismuth subsalicylate (4x/day)

 - Plus high dose acid suppressive therapy

(c) 2007, Paul Abourjaily, PharmD
43. Helicobacter pylori

Helicobacter pylori

- **Treatment duration:**
 - Typically 10-14 days for antibiotics
 - Acid suppressive therapy continued x 1 month with dose reduction

- **Adverse effects:**
 - Nausea, diarrhea, taste disturbances, allergic reactions

(c) 2007, Paul Abourjaily, PharmD