1. The Opioid Class of Analgesics

The Opioid Class of Analgesics

Introduction to Clinical Pain Problems
Tufts University School of Medicine
J. David Haddox, DDS, MD / Purdue Pharma L.P.
2007

(c) 2007, Purdue Pharma L.P., “Restricted use.”

2. Legal Terms and Conditions

Legal Terms and Conditions for Using The Opioid Class of Analgesics

I. COPYRIGHT AND TRADEMARK NOTICES
This Program is produced and owned by Purdue Pharma L.P. (“Purdue”). The entire content of this Program is fully protected under all applicable copyright and trademark laws. Further printing, copying, redistribution, or publication of any part of this Program is strictly prohibited unless expressly permitted by Purdue in writing.

II. RESTRICTIONS ON USING THE CONTENT OF THIS PROGRAM
Purdue makes no representations regarding the accuracy or the completeness of the content of this Program. You should not use the information contained herein for determining prescribing practices.
While Purdue uses reasonable efforts to include accurate and up-to-date information herein, Purdue makes no warranties or representations as to its accuracy. Purdue assumes no liability or responsibility for any errors or omissions in the content of this Program.

III. LIMITATION OF LIABILITY
Purdue provides the contents of this Program for informational purposes and for your general interest only. By using the Program you hereby agree not to rely on any of the information contained herein. Under no circumstances shall Purdue be liable for your reliance on any such information nor shall Purdue be liable for damages of any kind, including, without limitation, any direct, incidental, special, consequential, indirect, or punitive damages that result from the use of, or the inability to use, the materials in this Program or even if Purdue or a Purdue-authorized representative has been advised of the possibility of such damages.

(c) 2007, Purdue Pharma L.P., “Restricted use.”
3. Opioid Class of Analgesics: Slide 3

Legal Terms and Conditions for Using The Opioid Class of Analgesics (cont’d.)

III. LIMITATION OF LIABILITY (continued)
Applicable law may not allow the limitation or exclusion of liability or incidental or consequential damages, so the above limitation or exclusion may not apply to you. In no event shall Purdue’s total liability to you for all damages, losses, and causes of action whether the cause of the action is in contract, tort (including, but not limited to, negligence) or otherwise exceed the amount paid by you, if any, for accessing this Program.

IV. DISCLAIMER OF WARRANTIES
THE MATERIALS IN THIS PROGRAM ARE PROVIDED “AS IS” AND WITHOUT WARRANTIES OF ANY KIND EITHER EXPRESS OR IMPLIED, TO THE FULLEST EXTENT PERMISSIBLE PURSUANT TO APPLICABLE LAW. PURDUE DISCLAIMS ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. PURDUE DOES NOT WARRANT THAT THE MATERIALS HEREIN WILL BE ERROR-FREE. PURDUE DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE MATERIALS IN THIS PROGRAM IN TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. APPLICABLE LAW MAY NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

(c) 2007. Purdue Pharma L.P., “Restricted use.”

4. Legal Terms and Conditions (cont’d.)

Legal Terms and Conditions for Using The Opioid Class of Analgesics (cont’d.)

This lecture guide and accompanying slides are provided as a professional service by Purdue Pharma L.P., One Stamford Forum, Stamford, Connecticut

All Rights Reserved
Copyright © June 2004, Purdue Pharma L.P.

(c) 2007. Purdue Pharma L.P., “Restricted use.”
5. Program Objectives

Program Objectives

1. Compare and contrast opioid agonists, antagonists, partial agonists and agonist/antagonists, and give an example of each.
2. Identify the structural pharmacology of various opioid classes and utilize this information for the purpose of opioid rotation in a patient with true opioid allergy.
3. Differentiate the pharmacology and pharmacokinetics of various opioid analgesics, including their active metabolites, and relate this knowledge to possible adverse events and/or side effects.
4. Select the most appropriate opioid therapy based on individual patient demographics.

6. Definitions

Definitions

- **Opioid** refers broadly to all compounds related to opium
- **Opium** is a drug derived from the juice of the opium poppy, *Papaver somniferum*
- **Opiates** are drugs derived from opium, including the natural products (e.g., morphine) and many semisynthetic congeners derived from them

7. Opioids

Opioids

- Naturally occurring phenanthrene alkaloids
 - morphine - thebaine (precursor)
 - codeine

- Semisynthetic agents
 - hydromorphone - oxymorphone
 - hydrocodone - buprenorphine
 - oxycodone

- Synthetic agents
 - butorphanol - methadone
 - fentanyl - meperidine
 - levorphanol - pentazocine

(c) 2007, Purdue Pharma L.P. *Restricted use.

8. Opioids & Receptor Activity

Opioids & Receptor Activity

- Agonists - produce a maximal biologic response through binding to the opioid receptor
- Partial agonists - elicit a submaximal response at the receptor even at high doses
- Agonist/antagonists - produce divergent activities at different receptors (mixed)
- Antagonist - reverse or inhibit the effects of agonists by preventing receptor access

(c) 2007, Purdue Pharma L.P. *Restricted use.
9. **Mu (µ) Receptor Activation**

![Mu (µ) Receptor Activation Diagram]

(c) 2007, Purdue Pharma L.P. *Restricted use.*

10. **Dose-response Curves**

![Dose-response Curves Diagram]

Eum JE, Her A. Br J Pharmacol. 98;74:627-33.

(c) 2007, Purdue Pharma L.P. *Restricted use.*
11. How does this correlate to clinical pain management?

How does this correlate to clinical pain management?

- Different opioids may cause different side effects in an individual patient.

- These differences may actually be due to:
 - individual patient variability
 - differences in receptor subtype binding

12. Opioid Agonists: Structural Pharmacology

Opioid Agonists: Structural Pharmacology

<table>
<thead>
<tr>
<th>PHENANTHRENES</th>
<th>codeine, hydrocodone, morphine, hydromorphone, levorphanol, oxycodone, oxymorphone</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENYLPIPERIDINES</td>
<td>meperidine, fentanyl, alfentanil, remifentanil, sufentanil</td>
</tr>
<tr>
<td>DIPHENYLHEPTANES</td>
<td>methadone, propoxyphene</td>
</tr>
</tbody>
</table>

(Phenylheptanone)

13. Opioid Rotation (OR)

Opioid Rotation (OR)

- Switching the opioid a patient is receiving to another opioid to reduce limiting adverse effects and/or increasing analgesia\(^1\)
- OR may eliminate the adverse effects (AEs) produced by accumulation of metabolites\(^2\)
- Interindividual differences in analgesic responsiveness, not sensitivity to AEs, might play a larger role in the advantage that one opioid appears to have over another in a given patient\(^1\)

14. Codeine

Codeine

Antitussive & analgesic (mild – moderate pain)

- Half-life = 2.5–3.5 hours
- Biotransformation in the liver
 - glucuronidation
 - \(O\)-demethylation to morphine via CYP2D6
 - \(N\)-demethylation to norcodeine via CYP3A

15. **Codeine**

Codeine

- Analgesic activity
 - requires O-demethylation via CYP2D6 to form morphine
 - CYP2D6 deficiency – poor metabolizers
 - 8% African-Americans
 - 7% Caucasians
 - 1%

(c) 2007, Purdue Pharma L.P. “Restricted use.”

16. **Morphine**

Morphine

- IV, SC, IM administration
 - peak in 10-20 minutes; T½ = 1.4 – 3.4 hours
- Oral absorption
 - virtually complete
 - bioavailability 30-40% (range 19-47%)
 - oral:IV conversion ratio = 3:1-6:1
- Distribution
 - rapid, delayed penetration of BBB

(c) 2007, Purdue Pharma L.P. “Restricted use.”

OCW: Introduction to Clinical Pain Problems (J. Haddox)
17. Morphine

Morphine

- Metabolism:
 - biotransformation in the liver to glucuronide conjugates: morphine-3-glucuronide (44-55%) and morphine-6-glucuronide (9-10%)
 - additional metabolites: 3,6-diglucuronide, morphine-3-ethereal sulfate, normorphine and conjugates
- Excretion:
 - in urine unchanged (8-10%) & as conjugated metabolites

18. M-3-G (morphine-3-glucuronide)

M-3-G (morphine-3-glucuronide)

- 44-55% of morphine converted to M3G
- Mean molar plasma M3G: morphine = 22-56:1
- Very low affinity to opioid receptors, thus no analgesic activity
- Controversial role in analgesia
 - very low affinity to opioid receptors of any subtype
 - devoid of analgesic activity
 - may antagonize morphine or M6G
 - newer evidence that M3G doesn’t antagonize morphine or M6G

19. M-6-G (morphine-6-glucuronide)

M-6-G (morphine-6-glucuronide)

- 9-10% of morphine converted to M6G
- Mean molar plasma M6G:morphine = 22-56:1
- More potent analgesic than parent compound in studies in rat or mouse
 - 1-2 x as potent SC, up to 650 x more potent IT
- Accumulation in patients with renal impairment

(c) 2007, Purdue Pharma L.P. - Restricted use.

20. M-6-G and M-3-G (continued)

M-6-G and M-3-G (continued)

- M6G toxicity profile
 - fewer side effects than after morphine administration\(^1\)
- M3G toxicity profile
 - hyperalgesia, allodynia, myoclonus, seizures (animal)\(^2\)
 - role not clearly established in humans

(c) 2007, Purdue Pharma L.P. - Restricted use.
21. Renal Dysfunction and Morphine

Renal Dysfunction and Morphine

- Renal dysfunction & morphine metabolites
 - plasma concentrations – several-fold greater than in pts with normal renal function
 - kidney transplantation eliminated metabolite accumulation (Osborne et al)
 - clearance of metabolites directly correlated with creatinine clearance

22. Hepatic Dysfunction and Morphine

Hepatic Dysfunction and Morphine

- Hepatic dysfunction ¹,²
 - severe liver disease – glucuronidation impaired
 - milder disease - glucuronidation preserved
 - extrahepatic metabolism may play a role

(c) 2007, Purdue Pharma L.P. - Restricted use.
23. Pruritus and Morphine

Pruritus and Morphine

- Pruritus
 - Pruritus may be greater with morphine

24. Oxycodone

Oxycodone

- Oral bioavailability = 60% (50-87%)
- $T_{\text{max}} = 1$ hour; $T_{1/2} = 3.5$-5.65 hours
- Onset of analgesia = 0.52 ± 0.33 hours
- Overall profile w/ regard to protein binding & lipophilicity parallels that of morphine

25. Oxycodone

Oxycodone

- Metabolism:
 - N-demethylation to noroxycodone (major)
 - O-demethylation via CYP2D6 to oxymorphone (10%)
 - oxymorphone possesses analgesic activity, but is present in plasma only in low concentrations
 - blocking CYP2D6 inhibits oxymorphone synthesis (i.e., quinidine), but does not alter oxycodone analgesia

(c) 2007, Purdue Pharma L.P. *Restricted use.

26. Oxycodone

Oxycodone

- Excretion:
 - oxycodone and its metabolites are excreted primarily via the kidney
 - free oxycodone - up to 19%
 - conjugated oxycodone - up to 50%
 - free oxymorphone - 0%
 - conjugated oxymorphone - ≤14%
 - free and conjugated noroxycodone - not quantified

Data on file: Purdue Pharma L.P.

(c) 2007, Purdue Pharma L.P. *Restricted use.
27. Hydrocodone

Hydrocodone

- **Metabolism:**
 - a complex pattern including:
 - O-demethylation to hydromorphone (via CYP2D6)
 - N-demethylation to norhydrocodone (via CYP3A4), and
 - 6-keto reduction to the 6-hydroxymetabolites
 - hydromorphone metabolite contributes to overall analgesic effect
- **Elimination:**
 - parent and metabolites via the kidneys

(c) 2007, Purdue Pharma L.P. *Restricted use.

28. Hydromorphone (HM)

Hydromorphone (HM)

- Semisynthetic phenanthrene-derived opiate
- Hydrogenated ketone analogue of morphine
- Freely soluble in water, sparingly in alcohol
- Oral bioavailability = 42% ± 23
- Half-life (oral, immediate release) = 2.4 hrs ± 0.6
- Duration of action (oral, immediate release) = 3-4 hours

Dilaudid® (package insert, North Chicago, IL: Abbott Laboratories).

(c) 2007, Purdue Pharma L.P. *Restricted use.
29. **Biotransformation of HM**

Biotransformation of HM

- Large variations in hepatic metabolism of HM have been reported in normal, healthy volunteers\(^1\)
- Major metabolites\(^2\)
 - hydromorphone-3-glucuronide
 - hydromorphone-3-glucoside
 - dihydroisomorphine-6-glucuronide
- Minor metabolites\(^3\)
 - dihydroisomorphine-6-glucoside
 - dihydromorphone
 - dihydroisomorphine

30. **Metabolite Profile of Hydromorphone**

![Metabolite Profile of Hydromorphone](image-url)
31. Potential Role of HM Metabolites

Potential Role of HM Metabolites

- Hydromorphone-3-glucuronide (H3G)\(^1\)
 - Rat: dose-dependent behavioral excitation analogous to that reported for morphine-3-glucuronide (M3G)
 - H3G found to be 2.5x more potent than M3G
 - mean molar ratio H3G:H3M ↑ to 100:1 in renal failure\(^2\)
 - if H3G crosses BBB with equivalent efficiency to M3G, then myoclonus, allodynia and seizures observed in some patients on chronic, large doses of HM could be due to the accumulation of H3G
 - further studies need to be conducted to determine the action of all of hydromorphone’s metabolites in humans

(c) 2007, Purdue Pharma L.P. *Restricted use.

32. Methadone

Methadone

- Onset within 30-60 minutes via oral route
- Initial duration of action of 4-6 hours
- Incomplete cross-tolerance w/ opioids may be due to non-competitive binding of NMDA receptors
- Bioavailability 41-99%
- Very lipophilic, widely distributed and this may contribute to its long half-life

(c) 2007, Purdue Pharma L.P. *Restricted use.*
Methadone

- Biphasic elimination
 - alpha (2-3 hrs) and beta (8.5-120) half-lives

- Accumulation occurs with repetitive dosing

(c) 2007, Purdue Pharma L.P. "Restricted use.

Methadone

- Metabolism:
 - extensive biotransformation in liver
 - N-demethylation and cyclization to form pyrrolidines and pyrroline (inactive)
 - minor active metabolites (methadole, normethadole)

- Excretion:
 - in feces and urine as above metabolites and small amounts of unchanged drug

(c) 2007, Purdue Pharma L.P. "Restricted use."
35. Propoxyphene

Propoxyphene

- Structurally related to methadone
- 1/2 to 2/3 as potent as codeine orally
- N-demethylation via liver to norpropoxyphene which is renally cleared ($T_{1/2} = 30$ hours); accumulation with repetitive dosing
- Evidence does not support use of propoxyphene in osteoarthritis or rheumatoid arthritis pain
- Avoid use due to side effects and limited analgesic effectiveness

© 2007, Purdue Pharma L.P. "Restricted use.

36. Meperidine

Meperidine

- Synthetic opioid agonist
 - less potent, short duration of action (2-3 hrs)
- IM administration still used frequently
 - variably absorbed, painful, local irritation
- Metabolism:
 - hepatica via hydrolysis to meperidinic acid (inactive)
 - hepatically via N-demethylation to normeperidine, which may then be hydrolyzed to normeperidinic acid and subsequently conjugated
- Same effect on smooth muscle as other opioids at equianalgesic doses
- Neurotoxicity due to normeperidine accumulation

© 2007, Purdue Pharma L.P. "Restricted use.
37. Normeperidine

Normeperidine

- Renally excreted metabolite with a $T_{1/2}$ from 14-21 to 24-48 hrs vs. 3.1-4.1 hours for meperidine
- Clinical iatrogenic syndrome of anxiety, hyperreflexia, myoclonus, seizures, and mood changes within 24 hours
- Decreased renal function increases the likelihood of such toxicity

(c) 2007. Purdue Pharma. L.P. “Restricted use.

38. Fentanyl

Fentanyl

- Synthetic opioid related to the phenylpiperidines
- Highly lipid soluble mu-receptor opioid agonist
- Approximately 100 times more potent (IV to IV) than morphine, therefore doses are expressed in micrograms
- Elimination half-life is between 3 and 4 hours
- Undergoes hepatic metabolism and renal excretion

(c) 2007. Purdue Pharma. L.P. “Restricted use.
39. Levorphanol and Congeners

Levorphanol and Congeners

- Analgesia via *mu* and *kappa*$_3$-receptor agonism
 - less incidence of psychotomimetic or dysphoric effects
- Well absorbed following oral administration
- Duration of analgesia = 6 to 8 hours
- $t_{1/2} = 12$-16 hrs; accumulation w/ chronic dosing
- Glucuronide conjugation in the liver

(c) 2007, Purdue Pharma L.P. © Restricted use.

40. Buprenorphine

Buprenorphine

Exerts its pharmacologic effects at the *mu* receptor
- high affinity for *mu* receptors leads to preferential agonist effect
- slow dissociation from *mu* receptors may prolong effect
 - plasma levels may not parallel clinical effects
- Also an antagonist at the *kappa* receptor
 - may minimize dysphoric reactions

(c) 2007, Purdue Pharma L.P. © Restricted use.
41. Agonist-antagonists

Agonist-antagonists

- Mixed agonist-antagonists

 e.g.: pentazocine, butorphanol, nalbuphine

 - mu-receptor antagonists

 - may precipitate acute withdrawal in patients physically dependant on pure opioid agonists

 - analgesic actions primarily as kappa agonists

 - ceiling effect to analgesia

 - may produce kappa-mediated psychotomimetic effects

 e.g.: depression, dysphoria, altered mental status

42. Opioid Antagonists

Opioid Antagonists

- Antagonists

 e.g.: naltrexone, naloxone, naltrenone

 - bind to opioid receptors, but do not activate them

 - interfere with agonist actions

 - used to reverse opioid side effects

 e.g.: respiratory depression due to overdose

 - can induce a withdrawal syndrome in patients taking full opioid agonists

Hoekn F, Hanks GW. Opioid agonist-antagonist drugs in acute and chronic pain states. Drugs. 1991;41:326-44.

(c) 2007, Purdue Pharma L.P. *Restricted use.*
Summary

<table>
<thead>
<tr>
<th>Class</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENANTHRENES</td>
<td>codeine, hydrocodone, morphine, hydrocodone, hydromorphone, levorphanol, oxycodone, oxymorphone</td>
</tr>
<tr>
<td>PHENYLPIPERIDINES</td>
<td>meperidine, fentanyl, alfentanil, remifentanil, sufentanil</td>
</tr>
<tr>
<td>DIPHENYLHEPTANES (PHENYLHEPTANONE)</td>
<td>methadone, propoxyphene</td>
</tr>
</tbody>
</table>

(c) 2007, Purdue Pharma L.P. ‘Restricted use.’