1. Introduction to Glomerular Filtration

Introduction to Glomerular Filtration

Scott Gilbert, MD
Tufts-New England Medical Center

(c) 2007, Scott Gilbert, MD

2. Objectives

Objectives

- Define the glomerular filtrate
- Review the determinants of the glomerular filtration rate (GFR)
- Review how renal plasma flow (RPF) and GFR are affected by auto-regulation
- Understand the mediators of GFR regulation
- Discuss clearance and estimations of GFR

(c) 2007, Scott Gilbert, MD
3. Glomerular Filtrate

Glomerular Filtrate

- The glomerulus is a bag of highly specialized capillaries
- Fluid movement from capillary to filtrate is governed by Starling’s forces and intrinsic membrane properties
 - Hydraulic pressure (P)
 - Oncotic pressure (P)
 - Membrane properties (K_p
- Unique properties of the glomerular capillary are:
 - Increased hydraulic pressure
 - Increased permeability
 - Location between 2 arteriolar beds (afferent and efferent)

(c) 2007, Scott Gilbert, MD

4. Starling’s Forces

Starling’s Forces

- Net ultrafiltration pressure (P_{UF}) is the difference between the hydrostatic pressure (P) and the oncotic pressure (P)
- Hydrostatic Pressure
 - P_{GC} - Hydrostatic pressure in the Glomerular Capillary
 - P_{BS} - Hydrostatic pressure in Bowman’s Space
- Oncotic pressure
 - P_{GC} - Oncotic pressure in the Glomerular Capillary
 - P_{BS} - Oncotic pressure in Bowman’s Space

(c) 2007, Scott Gilbert, MD
5. Filtration Pressure

The filtration pressure is:

\[P_{UF} = \Delta P - \Delta \Pi \]

\[\Delta P = (P_G - P_B) \]

\[\Delta \Pi = (\Pi_G - \Pi_B) \]

\[P_{UF} = (P_G - P_B) - (\Pi_G - \Pi_B) \]

\[P_{UF} = (P_G + \Pi_B) - (P_B + \Pi_G) \]

(c) 2007, Scott Gilbert, MD

6. Filtration Pressure

- As the glomerular filtrate in virtually protein free, \(\Pi_B = 0 \) and the equation is reduced to:
 \[P_{UF} \approx P_G - (P_B + \Pi_G) \]

- In an experimental model:
 \[P_G \approx 49 \text{ mm Hg} \]
 \[P_B \approx 14 \text{ mm Hg} \]
 \[\Pi_G \approx 19 \text{ mm Hg} \]
 \[P_{UF} = 49 - (14 + 19) = 16 \text{ mm Hg} \]

- However, forces are not constant throughout the length of the glomerular capillary:
 - \(\Pi_G \) rises as protein-free filtrate is removed from the capillary
 - The ultrafiltration pressure falls from a high at the afferent end to a low at the efferent end

(c) 2007, Scott Gilbert, MD
7. Euvolemia

![Euvolemia Table]

8. Glomerular Membrane

Filtration is also related to the membrane characteristics (K_f)

- K_f is influenced by:
 - The glomerular capillary surface area (S)
 - The membrane permeability (L_p)

$K_f = S \cdot L_p$
9. Membrane Properties

Membrane Properties

- The glomerular membrane consists of the endothelium, the glomerular basement membrane, and the epithelium
- It is highly permeable to water and small molecules
- Cells and large molecules are reflected
- Negatively charged heparin sulfate incorporated into membrane repel anionic molecules greater than cationic

© 2007, Scott Gilbert, MD

10. Filtration Barrier

Filtration Barrier

© 2007, Scott Gilbert, MD
11. Endothelium

12. Endothelium
13. Glomerular Epithelium (podocytes)

14. Foot Process and Slit Diaphragm
15. Glomerular Filtration Rate

Glomerular Filtration Rate

GFR is the product of the membrane properties and the filtration pressures

\[
\text{SNGFR} = K_f \cdot P_{UF}
\]

\[
\text{SNGFR} = K_f \cdot (\Delta P - \Delta \Pi)
\]

\[
\text{SNGFR} = K_f \cdot (P_{GC} - (P_{BS} + \Pi_{GC}))
\]

(c) 2007, Scott Gilbert, MD

16. Factors that Affect GFR

Factors that Affect GFR

\[
\text{SNGFR} = K_f \cdot (P_{GC} - (P_{BS} + \Pi_{GC}))
\]

<table>
<thead>
<tr>
<th>Direct Determinants of GFR</th>
<th>Conditions that Increase GFR</th>
<th>Conditions that Decrease GFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_f)</td>
<td>Mesangial cell relaxation increases glomerular capillary surface area</td>
<td>Mesangial cell contraction reduces glomerular capillary surface area</td>
</tr>
<tr>
<td>(P_{GC})</td>
<td>Afferent arteriole dilation Efferent arteriole constriction Systemic hypertension</td>
<td>Afferent arteriole constriction Efferent arteriole dilation</td>
</tr>
<tr>
<td>(P_{BS})</td>
<td>Increased tubular pressure from obstruction of the tubule or extra-renal urinary system</td>
<td></td>
</tr>
<tr>
<td>(\Pi_{GC})</td>
<td>Hypoalbuminemia High renal plasma flow (oncotic pressure rises slower with ultrafiltration)</td>
<td></td>
</tr>
</tbody>
</table>

(c) 2007, Scott Gilbert, MD
Filtration Fraction

- The filtration fraction (FF) is the part of renal plasma flow (RPF) that is filtered/diverted into the tubule:
 \[\text{FF} = \frac{\text{GFR}}{\text{RPF}} \]
- FF changes with ultrafiltration pressure
- With an increased FF, the oncotic pressure of the efferent arteriole increases, facilitating reabsorption of tubular fluid

Auto-regulation

- The kidney guards filtration carefully
- This is accomplished by the glomerulus being situated between 2 arteriolar beds. Vascular tone in these 2 beds:
 - protects the delicate glomerular architecture at times of high blood pressure
 - preserves GFR at times of low systemic blood pressure

(c) 2007, Scott Gilbert, MD
19. Renal Resistance

20. Auto-regulation

- Despite wide swings in mean arterial pressure, the glomerular perfusion pressure (P_{GC}) remains within a narrow range.
 - Efferent arteriolar tone is critical to maintaining P_{GC} at low blood pressures.
 - Afferent arteriolar tone is critical to protecting P_{GC} at high blood pressures.
21. Mediators of GFR Regulation

Mediators of GFR Regulation

- Mediators of GFR will affect one of these elements:
 \[SNGFR = K_f \cdot (P_{GC} - (P_{BS} + P_{GC})) \]
- Local factors
 - Vascular tone
 - Tubuloglomerular feedback
- Hormonal factors
 - Angiotensin II
 - Prostaglandin
 - Sympathetic activity

(c) 2007, Scott Gilbert, MD

22. Vascular Tone

Vascular Tone

\[\uparrow P_1 \quad \downarrow P_2 \]

Afferent arteriole \[\downarrow P_{GC} \]

Efferent arteriole

(c) 2007, Scott Gilbert, MD
23. **Tubuloglomerular Feedback**

The glomerular filtrate is sensed by the macula densa of the distal convoluted tubule:

- Low tubular flow results in proximal Na\(^+\) and Cl\(^-\) reabsorption, stimulating renin release.
- High tubular flow with high distal Cl\(^-\) delivery increases afferent arteriolar tone and reduces GFR.

24. **Angiotensin II**

- Generated in response to renin catalyzing cleavage of angiotensinogen to angiotensin I, and converting enzyme cleavage to angiotensin II.
- Renin is released from the juxtaglomerular apparatus in response to low distal tubule Cl\(^-\) or sympathetic nerve activity.
- Angiotensin II results in:
 - Efferent arteriolar vasoconstriction
 - Increased filtration fraction
 - Increased blood pressure from systemic vasoconstriction
25. Angiotensin Blockade and GFR

![Angiotensin Blockade and GFR](chart.png)

(c) 2007, Scott Gilbert, MD

26. Sympathetic Activity and Prostaglandins

- **Sympathetic Activity**
 - Low blood pressure leads to baroreflex activation of the carotid body and sympathetic discharge
 - Stimulates efferent > afferent arteriolar vasoconstriction, preserving GFR
 - Leads to renin release from the JGA

- **Prostaglandins**
 - Released in response to AII and sympathetic activity
 - Acts to vasodilate the afferent arteriole and maintain renal blood flow despite vasoconstrictors
 - Effect is blocked by NSAIDs

(c) 2007, Scott Gilbert, MD
27. Mediators of GFR

28. Clearance

Clearance

- Clearance of a substance is the volume of plasma from which that substance is completely removed by the kidney per unit of time.

 Renal Artery Renal Vein
 ![Diagram showing clearance process]

- Clearance equals
29. Measuring Glomerular Filtration Rate

Measuring Glomerular Filtration Rate

- A substance that is freely filtered from the plasma and not secreted or absorbed by the tubule will have a clearance that equals GFR.

 \[
 \text{Filtered load} = \text{Urinary excretion of } x \\
 \text{Filtered load} = P_x \cdot \text{GFR} \\
 P_x = \text{plasma concentration of substance } x \\
 \text{Urinary excretion of } x = U_x \cdot V \\
 U_x = \text{urine concentration of substance } x \\
 V = \text{urine flow rate (per unit time)} \\
 P_x \cdot \text{GFR} = U_x \cdot V \\
 \therefore \ GFR = C_x = \frac{U_x \cdot V}{P_x} \\
 C_x = \text{clearance of substance } x

- Inulin is such a marker, where \(C_{\text{inulin}} = \text{GFR} \).

(c) 2007, Scott Gilbert, MD

30. Measuring Renal Plasma Flow

Measuring Renal Plasma Flow

- If a substance is not only freely filtered, but also secreted such that all substance reaching the kidney is cleared, then:

\[
C_x = \text{RPF}
\]

- Clearance equals

- Para-aminohippuric acid (PAH) is such a molecule whose clearance equals RPF.

(c) 2007, Scott Gilbert, MD
31. Factor Influencing Clearance

Factor Influencing Clearance

- GFR begins declining in men and women at around age 35
- GFR is lower for women than for men
- GFR is related to lean body mass, gender, age, and diet

(c) 2007, Scott Gilbert MD

32. Estimating GFR

Estimating GFR

- **Inulin**
 - Freely filtered, without tubular secretion or reabsorption
 - Expensive, requires infusion, and not readily available

- **Creatinine Clearance**
 - Freely filters, but also secreted
 - Secretion is variable
 - Requires a timed urine collection with single plasma Cr value

- **Serum Creatinine**
 - Errors in variable secretion are magnified
 - Inexpensive, simple

(c) 2007, Scott Gilbert MD
Formulas for Monitoring Kidney Function and Estimating GFR...

- **1/Cr**

- **Cockcroft-Gault**
 \[
 \text{Cr Clearance} = (140 - \text{age}) \times (\text{wt in Kg}) \times (0.85 \text{ if female}) / 72 \times (P_{cr})
 \]

- **MDRD equation**
 \[
 \text{GFR} = 170 \times [P_{cr}]^{-1.154} \times [\text{Age}]^{-0.203} \times [0.742 \text{ if patient is female}] \times [1.212 \text{ if patient is black}]
 \]

(c) 2007, Scott Gilbert, MD

Summary

- The glomerular filtration rate is determined by Starling’s forces and the intrinsic properties of the glomerular membrane according to the equation:
 \[
 \text{GFR} = S \times Lp \times (P_{GC} - (P_{BS} + \Pi_{GC}))
 \]

- Auto-regulation and preservation of the GFR is achieved by adjusting the filtration fraction according to the formula:
 \[
 \text{FF} = \text{GFR} / \text{RPF}
 \]

- Clearance of a substance is the volume of plasma from which that substance is completely removed per unit of time. If a substance is neither secreted or reabsorbed:
 \[
 C_x = \text{GFR} = U_x \times V / P_x
 \]

(c) 2007, Scott Gilbert, MD