1. Title

Medicine I: Part II

Laboratory Tests
and
Signs and Symptoms (S/S) of Diseases

Kanchan Ganda M.D.

(c) 2006, Kanchan Ganda, M.D.

2. Significant Lab Tests in Dentistry

Significant Lab Tests in Dentistry

Hematological Tests:
- CBC: Complete Blood Count with Platelets & WBC differential
- ESR: Erythrocyte Sedimentation Rate
- P.T.T.: Partial Thromboplastin Time

(c) 2006, Kanchan Ganda, M.D.
3. Significant Lab Tests in Dentistry

Significant Lab Tests in Dentistry

- **Renal Tests:**
 - Serum Creatinine (S. Cr.)
 - Blood Urea Nitrogen (BUN)

- **Diabetes Tests:**
 - FBS: Fasting Blood Sugar
 - PPBS: Post Prandial / Post Meal Blood Sugar
 - HbA1c: Hemoglobin A1c

- **Hepatic Serology & Liver Function Tests: (LFTs)**

(c) 2006, Kanchan Ganda, M.D.

4. Significant Lab Tests in Dentistry

Significant Lab Tests in Dentistry

- **Bone Assessment Tests:**
 - Serum Calcium
 - Serum Phosphorus
 - Alkaline Phosphates

- **HIV/AIDS Status Assessment:**
 - CD4 Count
 - Viral Load
 - CBC w / Plts. & WBC Diff.
 - L.F.T.s
 - PT/INR

(c) 2006, Kanchan Ganda, M.D.
Role of Laboratory Data Analysis

- Laboratory tests are done AFTER completion of thorough History Taking & Physical Examination
- They are TOOLS to determine the presence or absence of a diagnosis
- They are used to follow the course of a disease process

(c) 2006, Kanchan Ganda, M.D.

6. CBC

CBC

<table>
<thead>
<tr>
<th>WBC</th>
<th>RBC</th>
<th>HGB</th>
<th>HCT</th>
<th>MCY</th>
<th>MCH</th>
<th>MCHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>4.73</td>
<td>13.8</td>
<td>41</td>
<td>86</td>
<td>29</td>
<td>34</td>
</tr>
<tr>
<td>4.5–11.0</td>
<td>3.60–5.30</td>
<td>11.5–16.0</td>
<td>37–47%</td>
<td>80–100 IL</td>
<td>27–34 Pg</td>
<td>31–36 g/dL</td>
</tr>
</tbody>
</table>

(c) 2006, Kanchan Ganda, M.D.
7. CBC

CBC

<table>
<thead>
<tr>
<th>RDW</th>
<th>MPV</th>
<th>PLAT</th>
<th>NEUT</th>
<th>LYMP</th>
<th>MONO</th>
<th>EOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4</td>
<td>10.2</td>
<td>158</td>
<td>60</td>
<td>29</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>11.5-14.5 %</td>
<td>6.6-11.0 IL</td>
<td>140-400 thou/mL</td>
<td>50-75%</td>
<td>20-40%</td>
<td>0-8%</td>
<td>0.5-5%</td>
</tr>
</tbody>
</table>

(c) 2006, Kanchan Ganda, M.D.

8. Complete Blood Count (CBC)

Complete Blood Count (CBC)

- WBC: White Blood Cells: 4,000 - 10,000 / mm3
- RBC: Red Blood Cells: 4.2 - 5.9 million / mm3
- Hb.: Hemoglobin: Males: 14 - 18 g / dL
 Females: 12 - 16 g / dL
- Hematocrit: Males: 40 - 54%
 Females: 37 - 47%
- MCV: Mean Corpuscular Volume: 86 - 98 μm3 / cell
- MCH: Mean Corpuscular Hemoglobin: 27 - 32 μg / RBC
- RDW: Red Cell Distribution Width – 11.5-14.5
- Platelet Count: 150,000 - 400,000 / mm3
- WBC Differential:
 Neutrophils: 40-75%
 Lymphocytes: 15-45%
 Monocytes: 1-10%
 Eosinophils: 1-8%
 Basophils: 0-2%

(c) 2006, Kanchan Ganda, M.D.
9. RBC Analysis and Anemias

RBC Analysis and Anemias

- RBC count can be normal or decreased with anemia
- **Decreased RBC count can be due to:** Under production OR Over destruction
- Hematoct (Hct) measures the percentage of formed elements in the blood: RBCs, WBCs, Platelets
- Hb, Hct, MCV & MCH are collectively evaluated to detect the type of anemia

(c) 2006, Kanchan Ganda, M.D.

10. RBC Analysis and Anemias

RBC Analysis and Anemias

RDW (11.5-14.5):
- Measures the degree of variability in the RBC size in the Peripheral Smear
- Immature RBCs are larger in diameter compared to the mature RBCs
- Presence of a small percentage of immature RBCs is “normal”
- Increased RDW: Indicates an “Active Bone Marrow”
- Decreased RDW: Indicates an “inactive Bone Marrow”

(c) 2006, Kanchan Ganda, M.D.
11. Analysis of RBC and RDW Patterns

Analysis of RBC and RDW Patterns

Decreased RBC count with an increased RDW:
 - Active bone marrow
 - This pattern is frequently seen with many anemias

Decreased RBC count with a decreased RDW:
 - Depressed bone marrow
 - Often associated with Pancytopenia

PANCYTOPENIA:
 - Decreased WBCs, RBCs & Platelets

Tissue hypoxia, infection & bleeding is of concern with PANCYTOPENIA

(c) 2006, Kanchan Ganda, M.D.

12. Anemia Classification by MCV / MCH Pattern

Anemia Classification by MCV / MCH Pattern

Microcytic, Hypochromic:
 - Decreased Hb
 - Decreased Hct.
 - Decreased MCV
 - Decreased MCH

Causes:
 - Iron Deficiency Anemia
 - Thalassemia

Macrocytic / Megaloblastic:
 - Decreased Hb
 - Decreased Hct
 - Increased MCV
 - Increased MCH

Causes:
 - Pernicious anemia
 - Vit. B$_{12}$ deficiency
 - Folic acid deficiency

(c) 2006, Kanchan Ganda, M.D.
13. Anemia Classification: MCV / MCH Pattern

Anemia Classification: MCV / MCH Pattern

Normochromic, Normocytic Anemia:
- Hemoglobin: Decreased
- Hematocrit: Decreased
- MCV: Normal
- MCH: Normal

Causes:
- Acute hemolysis
- Aplastic anemia
- Chronic diseases: SLE; Rheumatoid Arthritis (RA)

(c) 2006, Kanchan Ganda, M.D.

14. Anemia: Classification by Types

Anemia: Classification by Types

Congenital / Hemolytic:
- Sickle cell anemia
- Thalassemia: Major / Minor
- Hereditary Spherocytosis
- G6PD Deficiency Anemia

Nutritional Anemias:
- Iron deficiency
- B12 or Folic acid deficiency
- Mal absorption associated anemias

(c) 2006, Kanchan Ganda, M.D.
15. Anemia: Classification by Type

Anemia: Classification by Type

Acquired Anemias due to chronic use of:
- Aspirin
- NSAIDs
- Corticosteroids

Anemia Associated with Chronic Renal Disease:
- Due to decreased Erythropoietin production

Anemia Associated with Bone Marrow Infiltration:
- Often associated with Pancytopenia

(c) 2006, Kanchan Ganda, M.D.

16. Iron Deficiency / Microcytic Anemia

Iron Deficiency / Microcytic Anemia

- The most common type of Nutritional anemia
- Affects all ages
- Often associated with chronic blood loss due to:
 - Heavy menstruation (Menorrhagia)
 - Frequent menstruation (Metrorrhagia)
 - Chronic gastrointestinal (G.I.) bleeds
 - Intestinal parasites
- PICA:
 - Abnormal craving to chew on ice / chalk / crayon

(c) 2006, Kanchan Ganda, M.D.
17. Iron Deficiency / Microcytic Anemia

Iron Deficiency / Microcytic Anemia

- Check for chronic use of Aspirin, NSAIDs or Corticosteroids
- Check for H/O of black tarry stools / fresh blood in the stools
- Guaiac test is positive when there is blood in the stools
- The Guaiac test detects microscopic G.I. tract bleeding

Oral findings:
- Recurrent Aphthous Ulcerations
- Angular Cheilitis
- Oral Candidiasis

(c) 2006, Kanchan Ganda, M.D.

18. Macrocytic Anemia

Macrocytic Anemia

- B₁₂ deficiency is confirmed by the Shilling’s test
- B₁₂ deficiency / Pernicious anemia is common in Women 50 years & older
- Folic acid deficiency affects ALL ages
- Macrocytic cells seen on CBC with both
- S/S are the same for BOTH the deficiencies

(c) 2006, Kanchan Ganda, M.D.
19. Folic Acid Deficiency

Folic Acid Deficiency

Folic acid deficiency can be caused by:

- Alcoholism: Most common cause
- Phenytoin Sodium (anti-seizure med.)
- Anti-Metabolites (Cancer drugs)
- HIV / AIDS drugs

(c) 2006, Kanchan Ganda, M.D.

20. Macrocytic Anemias

Macrocytic Anemias

Symptoms:

- Burning tongue: Often the first symptom
- Dysphagia (difficulty swallowing)
- Odynophagia (painful swallowing)
- Circum oral tingling numbness: Early symptom
- Tingling numbness in the hands & feet: Early symptom

(c) 2006, Kanchan Ganda, M.D.
21. Macrocytic Anemias

Macrocytic Anemias

Signs:
• Microglossia: Late in the disease
• Depapillation of the tongue: Late in the disease
• Beefy Red tongue: Late in the disease

Treatment:
• Replace B₁₂ with monthly IM injections
• Replace Folic acid with daily PO intake

(c) 2006, Kanchan Ganda, M.D.

22. Hemolytic Anemias

Hemolytic Anemias

• Populations most affected are:
 – Blacks, Middle Eastern and Mediterranean
• Strong family history
• Anemia appears early in life
• Past History of "Acute crisis" is very common

Acute Crisis is often associated with:
 – Fever and Malaise
 – Pain in the long bones
 – Worsening of the anemia
 – Hospitalization

(c) 2006, Kanchan Ganda, M.D.
23. Hemolytic Anemias

Hemolytic Anemias

Additionally, in "Acute crisis" the patient experiences:

- Pain in the left upper abdominal quadrant (LUQ)
- Pain is caused by an enlarged Spleen
- Thus, increased sequestration of RBCs occur
- Splenectomy history is very common in the 20s

(c) 2006, Kanchan Ganda, M.D.

24. Chairside Staging of Anemia

Chair-side Staging of Anemia

Staging depends on the Percentage drop of Hb.:

- Normal: Females: 12-15 g / dL
 Males: 14-18 g / dL
- Mild anemia: Hb. decreased by 25% from normal
- Moderate anemia: Hb. decreased by 25-50% from normal
- Severe anemia: Hb. drops by more than 50% from normal

Differ routine dental treatment in severe anemia

(c) 2006, Kanchan Ganda, M.D.
25. Mild Anemia: General Symptoms

Mild Anemia: General Symptoms

These symptoms occur on EXERTION ONLY:
• Tiredness
• Weakness
• Fatigue
• Palpitations
• Decreased stamina

• The patient also experiences anorexia

(c) 2006, Kanchan Ganda, M.D.

26. Moderate and Severe Anemia: Symptoms

Moderate and Severe Anemia: Symptoms

Moderate Anemia:
• Mild anemia symptoms worsen & now occur at rest too

Severe Anemia:
• Further worsening of anemia symptoms at rest
• Occurrence of Orthopnea
• Orthopnea is an inability to lay flat in bed
• Palpitations
• CHF (Congestive Heart Failure) symptoms & signs

(c) 2006, Kanchan Ganda, M.D.
27. Congestive Heart Failure (CHF)

Congestive Heart Failure (CHF)

CHF Symptoms & Signs:
- Palpitations
- Orthopnea
- Cough with frothy sputum
- Distended Neck Veins: Jugulars are engorged
- Functional Systolic murmur
- Rales in the base of BOTH lungs
- Ankle edema

(c) 2006, Kanchan Ganda, M.D.

28. Signs Associated with the Anemias

Signs Associated with the Anemias

General Signs of Anemia:
- Pallor of Conjunctiva
- Pallor of the Oral Mucosa
- Pallor of the Nail beds
- Chronic Iron Deficiency Anemia causes:
 Kolonychia / Spooning of the nails
- White Palmer creases occur when the hemoglobin is:
 Below 50% of normal

(c) 2006, Kanchan Ganda, M.D.
29. Mechanism of Clot Formation

Mechanism of Clot Formation

Vessel Wall Injury $\xrightarrow{\text{Platelet aggregation}}$ Vessel Wall Contraction $\xrightarrow{\text{Platelet Adhesion}}$

Fibrin formation $\xrightarrow{\text{Plugging of injured vessel wall}}$

(c) 2005, Kanchan Ganda, M.D.

30. Elements of Hemostasis

Elements of Hemostasis

Primary Hemostasis:
- Adequate Vascular Response
- Adequate Platelet Numbers
- Adequate levels of Von Willebrand’s Factor (VWF)
- Aspirin and NSAIDs affect Primary Hemostasis

Secondary Hemostasis:
- Adequate levels of Clotting Factors
- Heparin and Coumadin affect Secondary Hemostasis

(c) 2005, Kanchan Ganda, M.D.
31. Elements of Hemostasis

Elements of Hemostasis

Blood Vessels:
- Constrict on injury, release Tissue Factor & attract Platelets

Platelets:
- Normal Platelet Count: 150,000-400,000 / mm³
- Bleeding Time (B.T.) measures the Platelet function
- B.T. is prolonged with Thrombocytopenia & Plt. Dysfunction

Von Willebrand’s / VWF:
- Enhances Platelet cohesiveness
- Factor VIII-VW helps transport Factor VIIIc of Clotting Cascade

(c) 2006, Kanchan Ganda, M.D.

32. The Clotting Pathway

The Clotting Pathway

(c) 2006, Kanchan Ganda, M.D.
33. Elements of Hemostasis

Elements of Hemostasis

Clotting Factors:
- Clotting Factors interact to form the Fibrin Clot
- Factor VIII is produced in the Endothelial cells of the blood vessels
- All other Clotting Factors are manufactured in the liver

Tests that measure the function of the Clotting Factors are:
- PT / INR: Extrinsic Pathway
- PTT: Intrinsic Pathway

(c) 2006, Kanchan Ganda, M.D.

34. Von Willebrand's Disease

Von Willebrand's Disease

- Familial condition affecting Males & Females
- Immediate Type of bleeding S/S occur more commonly
- Delayed Type of bleeding S/S are experienced less often S/S occur only when the Factor VIIIc levels drop below 50% of normal
- The B. T. is always prolonged
- PTT may be prolonged

(c) 2006, Kanchan Ganda, M.D.
35. Clotting Factor Tests

Clotting Factor Tests

Prothrombin Time (PT):
- Measures the Extrinsic Pathway
- Normal range is 10-12 seconds
- Affected by Coumadin intake

International Normalized Ratio (INR) test:
- INR is the universally standardized test currently used
- It is used to monitor Coumadin levels

36. International Normalized Ratio (INR)

International Normalized Ratio (INR)

\[\text{INR} = \frac{\text{Patients PT}}{\text{Control PT}} \times \text{ISI}^* \]

- The normal INR range is 0.9-1.2
- The INR is monitored during Coumadin therapy
- The INR is repeated every 4-6 weeks

*ISI: International Sensitivity Index of Thromboplastin

(c) 2006, Kanchan Ganda, M.D.
37. Clotting Factor Tests

Clotting Factor Tests

Partial Thromboplastin Time (PTT):
- Measures the Intrinsic Pathway
- Normal range of PTT is 25 - 38 seconds
- Usually monitored when I.V. Heparin is used

(c) 2006, Kanchan Ganda, M.D.

38. Clotting Factors and Platelet Levels in Cirrhosis

Clotting Factors and Platelet levels in Cirrhosis

- Platelet sequestration by an enlarged spleen can occur with Cirrhosis
- Cirrhosis is not always associated with a prolonged PT / INR
- CF* reserves have to be less than 50% normal to ↑ the PT / INR
- Always check for immediate & delayed type of bleeding history
- In Cirrhosis always check Plt. count & PT/INR prior to probing
 *(CF: Clotting Factor)

(c) 2006, Kanchan Ganda, M.D.
39. Bleeding in Relation to Surgery and S/S

Bleeding in Relation to Surgery and S/S

Immediate Type of Bleeding:
- Oozing that continues for more than 24 h Post Op.
- So ask the patient about the duration of Post Op. bleeding
- Positive H/O mucus membrane bleeding, superficial Nickel/Dime size bruises & Petechiae
- Tests: Platelet Count; Bleeding Time (BT)

Delayed Type of Bleeding:
- Deep tissue bleeding that occurs 4-10 days Post Op.
- So ask the patient about any start of bleeding 4-10 days Post Op.
- Positive H/O deep lemon/orange size hematomas &/or hemarthrosis
- Tests: PT/INR; PTT

(c) 2006, Kanchan Ganda, M.D.

40. Causes of Deep Tissue Bleeding

Causes of Deep Tissue Bleeding

Clotting factor deficiencies can be due to:
- Hemophilia A*
- Hemophilia B**
- Chronic Liver disease: Cirrhosis
- Chronic Small Bowel disease due to mal-absorption of Vit. K
- Anti Coagulants:
 - Heparin
 - Coumadin

* Deficiency of Factor VIII: Only Males are affected
** Deficiency of Factor IX: Only Males are affected

(c) 2006, Kanchan Ganda, M.D.
41. Immediate Type of Bleeding: Steroids

Immediate Type of Bleeding: Steroids

- Chronic Corticosteroid use can cause Immediate Type of Bleeding
- Chronic use thins the connective tissue lining of the small arterioles
- The small arterioles become fragile
- The Platelet Count & Bleeding Time (BT) are NORMAL

(c) 2006, Kanchan Ganda, M.D.

42. Cardiopulmonary Diseases

Cardiopulmonary Diseases

CARDIAC:
- Rheumatic Fever (RF)
- Rheumatic Heart Disease (RHD)
- Hypertension: Htn.
 - Primary
 - Secondary

PULMONARY:
- Sinusitis
- Asthma
- Chronic Obstructive Pulmonary Disease: COPD
- Mycobacterium Tuberculosis: MTB

(c) 2006, Kanchan Ganda, M.D.
43. Erythrocyte Sedimentation Rate (ESR)

Erythrocyte Sedimentation Rate (ESR)

- ESR: Males: 0-15mm/hr
 - Females: 0-20mm/hr

- ESR is a nonspecific test
- It measures the level of Globulin and Fibrinogen

Serial ESRs are used to follow the course of:
- Infections
- Chronic inflammatory disease states
- Connective tissue disorders
- ESR is also used as a screening tool for Malignancy

(c) 2006, Kanchan Ganda, M.D.

44. Strep Throat

Strep Throat

- Normal Oral Flora contains:
 - *Strep viridans* / *α*-Hemolytic Streptococcus

- Strep Throat: Caused by *β*-hemolytic streptococcus
- *β*-hemolytic streptococcus is an invading bacteria
- Throat culture is always positive

- Strep Throat is associated with:
 - Fever, Sore Throat, Myalgia (muscle aches),
 - Dysphagia (difficulty swallowing)
- **NO WATERY EYES & RUNNY NOSE SYMPTOMS**
- Rx: Antibiotics

(c) 2006, Kanchan Ganda, M.D.
45. Rheumatic Fever (RF)

Rheumatic Fever (RF)

RF is an acute inflammatory response to a PAST

- Group A, β hemolytic streptococcal infection

- RF occurs 3-4 weeks after an untreated / partially treated β - hemolytic streptococcal infection

- An antigen-antibody response triggers tissue damage in specific areas of the body

(c) 2006, Kanchan Ganda, M.D.

46. Rheumatic Fever (RF)

Rheumatic Fever (RF)

- β-Hemolytic strep is associated with 2 Types of Antigens:
 - Streptolysin O : Strongly antigenic
 - Streptolysin S : Weekly antigenic

- Streptolysin O triggers an Antigen-Antibody reaction

- A positive Anti Streptolysin O Titer (ASLO) occurs

- Thus a positive ASLO titer confirms that a β - hemolytic strep infection has occurred in the recent past

- Throat culture is always negative with RF

(c) 2006, Kanchan Ganda, M.D.
47. RF: Jones Criteria

RF: Jones Criteria

- RF affects specific areas / tissues in the body
- Major & Minor Jones Criteria specify the areas involved
- The Criteria were recognized & described by Dr. Jones

Major Jones Criteria:
- Arthritis
- Carditis
- Rheumatic Chorea
- Erythema Marginatum
- Erythema Nodosum

(c) 2006, Kanchan Ganda, M.D.

48. RF: Minor Jones Criteria and Diagnosis

RF: Minor Jones Criteria and Diagnosis

Minor Jones Criteria:
- Fever
- Pain in the Right Upper Abdominal Quadrant (RUQ)
- Elevated Erythrocyte Sedimentation Rate (ESR)
- Increased C - reactive protein
- Elevated ASLO titer
- EKG changes

A Diagnosis of RF is made when the Patient has:
- Two Major Criteria OR One Major and Two Minor Criteria

(c) 2006, Kanchan Ganda, M.D.
49. Rheumatic Arthritis

Rheumatic Arthritis

- Rheumatic arthritis is seen most commonly in children
- Rare in adults
- Major joints are affected bilaterally
- Joints are swollen, painful & filled with aseptic fluid
- It is thus an aseptic arthritis
- Resolution of joint swelling occurs in a few weeks
- No residual joint deformity persists following recovery
- In the acute phase as one set of joints recovers another gets involved
- The Rheumatic arthritis is referred as a Fleeting type of Arthritis

(c) 2006, Kanchan Ganda, M.D.

50. Rheumatic Heart Disease (RHD): Carditis

Rheumatic Heart Disease (RHD): Carditis

- All 3 layers of the Heart can be affected by RHD:
 - Endocardium
 - Myocardium
 - Pericardium
- The Endocardium is most frequently involved
- Fibrosis of the affected Valves can cause:
 - Stenosis or Narrowing
 and / or
 - Incompetence or Widening
- Regurgitation/Reverse flow occurs with Incompetent Valves

(c) 2006, Kanchan Ganda, M.D.
51. Rheumatic Heart Disease (RHD): Carditis

Rheumatic Heart Disease (RHD): Carditis

- Valve lesions more common in Children are:
 - Mitral Stenosis (MS)
 - Mitral Incompetence (MI)
- Valve lesions more common in Adults are:
 - Aortic Stenosis (AS)
 - Aortic Incompetence (AI)
- Mitral valves are most commonly affected by RHD
- Pulmonic valves are least commonly affected by RHD
- Premedication prior to invasive Dentistry is required

(c) 2006, Kanchan Ganda, M.D.

52. RHD: Carditis

RHD: Carditis

- Involvement of the Myocardium is rare
- H/O Cardiomyopathy requires Premedication
- Pericardial involvement is common in Children
- Pericardial effusion with aseptic fluid occurs
- Always Premedicate with a Past H/O Pericarditis
- RF with RHD: Premedication for all invasive procedures
- RF without RHD: No Premedication required

(c) 2006, Kanchan Ganda, M.D.
53. Rheumatic Chorea

Rheumatic Chorea

- Occurs exclusively in Children
- Involuntary, jerky movements occur
- Emotional distress worsens the movements
- Movements are absent during sleep
- Females are affected more than Males
- Rheumatic Chorea improves with age
- Stress management during Dentistry is extremely helpful

(c) 2006, Kanchan Ganda, M.D.

54. Erythema Marginatum

Erythema Marginatum

- The rash is a RARE finding
- 10% of patients only give a positive history of the rash
- Light skinned patients only demonstrate the rash
- Presence of the rash is DIAGNOSTIC of RF
- It is a Doughnut shaped, Serpeneous (snake-like) rash
- The rash has a pale center and dark margins
- The rash starts on the lower trunk & migrates upwards
- The lower rash disappears as the upper rash begins

(c) 2006, Kanchan Ganda, M.D.
55. Erythema Nodosum

Erythema Nodosum

- Also called Subcutaneous Nodules
- Pea-sized, RECURRING Painless nodules
- Occur at the Elbows and Shins

- Can also be seen with:
 - Tuberculosis
 - Sarcoidosis

- Thus E. Nodosum is not specific for Rheumatic Fever

(c) 2006, Kanchan Ganda, M.D.

56. Minor Jones Criteria

Minor Jones Criteria

- Fever: Moderately high
- Pain in RUQ: Liver engorgement due to CHF
- Elevated Erythrocyte Sedimentation Rate (ESR): Inflammation
- Increased C-reactive protein:
 - Marker for a recent past β hemolytic streptococcal infection
- Elevated ASLO titer
- EKG changes: Myocardial changes affecting Cardiac conduction

(c) 2006, Kanchan Ganda, M.D.
57. RF: Interrogation

RF: Interrogation

Was there a childhood illness with the following S/S?
• High fever
• Joint swellings or pain
• Skin rashes
• Chest pains
• Heart murmurs that started with the acute illness
• Did the patient get hospitalized for the illness?

(c) 2006, Kanchan Ganda, M.D.

58. RF: Interrogation and Rx Facts

RF: Interrogation and Rx Facts

• Was the patient given any Preventive Therapy for 5 years on recovery after the first attack of RF?

PREVENTIVE THERAPY:
• 1.2 million units of Benzathine Penicillin I.M, monthly
 or
• Azithromycin, 250 mg per day

• This therapy prevents future attacks with β-Hemolytic Strep.
• Research shows that a 5 year protection is sufficient

(c) 2006, Kanchan Ganda, M.D.
RF: Interrogation and Rx Facts

- For Premeditation during Preventive therapy, always select an antibiotic from ANOTHER FAMILY

- With Benzathine Penicillin I.M., use:
 Macrolides, P.O. OR Clindamycin, P.O.
- These antibiotics can be combined as the routes are different

- With Azithromycin use: Clindamycin, P.O. ONLY

- The Preventive Therapy is not stopped during Dentistry

(c) 2006, Karchan Ganda, M.D.

Bacterial Endocarditis: Pathology

Bacterial Endocarditis: Pathology

Endothelial trauma can occur with:
- Valvular Regurgitation
- Valvular Stenosis
- High pressure gradients due to ASD or VSD

- Deposition of Platelets & fibrin occur at the trauma site
- A sterile, ASEPTIC vegetation is formed
- This vegetation is extremely FRIABLE

(c) 2006, Karchan Ganda, M.D.
61. Bacterial Endocarditis: Pathology

Bacterial Endocarditis: Pathology

- Invasive treatment causes bacteremia
- The aseptic vegetation thus becomes SEPTIC
- The friable septic thrombus can dislodge into the circulation causing Bacterial Endocarditis

Bacterial Endocarditis can manifest as:
- Acute Bacterial Endocarditis (ABE)
 - or
- Subacute Bacterial Endocarditis (SBE)
- SBE is more common than ABE

(c) 2006, Kanchan Ganda, M.D.

62. Bacterial Endocarditis: Etiology

Bacterial Endocarditis: Etiology

Etiology of ABE:
- Staphylococcus
- Viral
- Fungal

Etiology of SBE:
- \(\alpha \) - hemolytic streptococcus

(c) 2006, Kanchan Ganda, M.D.
63. Acute Bacterial Endocarditis

Acute Bacterial Endocarditis

- ABE is rare - is more aggressive than SBE & can be fatal
- Common in: Elderly patients & I.V. drug users
- S/S develop within 7 days
- S/S experienced are:
 - Acute malaise and spiking temperatures
 - Joint pains
 - Cardiac arrhythmia
 - Hematuria (blood in the urine)
 - Splinter hemorrhages in the finger nails
 - Profound Hypotension

(c) 2006, Kanchan Ganda, M.D.

64. Subacute Bacterial Endocarditis

Subacute Bacterial Endocarditis

- SBE is more common and less debilitating than ABE
- SBE has no specific age / population prevalence, unlike ABE
- S/S occur in 2-3 weeks, occasionally in 2-3 months

S/S:
- Gradual onset of flu like symptoms
- Joint pains
- "Salmon colored" urine due to hematuria
- Splinter hemorrhages in the finger nails

(c) 2006, Kanchan Ganda, M.D.
65. Premedication / Prophylaxis: Rationale

Premedication / Prophylaxis: Rationale

- AHA recommended Prophylaxis is thus specifically directed against α - Hemolytic Streptococcus

- Schedule successive appointments at least 7 days apart when using the same antibiotic for Premedication

- This prevents the α - Hemolytic Streptococcus from becoming resistant to the antibiotic

(c) 2005, Kanchan Ganda, M.D.

66. Premedication / Prophylaxis: Recommended

Premedication / Prophylaxis: Recommended

- RF with RHD
- Cardiomyopathy, with or without RF
- Systemic Shunts
 - Hemo dialysis shunt
 - Intra Cranial Hydrocephalic shunt
- Prosthetic Cardiac Valves:
 - Mechanical valves
 - Bio Prosthetic valves
- Past H/O Bacterial Endocarditis

(c) 2005, Kanchan Ganda, M.D.
Premeditation / Prophylaxis: Recommended

Premedication / Prophylaxis: Recommended

- Most Congenital Cardiac Malformations
 Exception: Ostium Secundum ASD
- Acquired Valvular Dysfunction:
 Long standing DM / SLE / Hyperlipidemia causes valvular fibrosis
- Mitral Valve Prolapse (MVP) with Regurgitation:
 Confirmed by an ECHO Cardiogram
- Dacron graft, outside the heart:
 Premedication needed for life
- Intra Cardiac Dacron graft:
 Premedication needed for the first 6 months following repair ONLY

(c) 2006, Kanchan Ganda, M.D.

Premeditation / Prophylaxis: Recommended

- Valvular damage caused by the diet drug Fenfluramine
 Recent studies have shown reversal of damage in some patients
 ALWAYS confirm reversal with patient’s MD
 No premedication required following confirmed recovery
- Infuse Port/ Hickman Catheter Line used for chemotherapy
- STENTS with Angioplasty:
 Occasionally recommended by some PCPs for the first month only
- Prosthetic Joints: Initial 2 years (a must) or beyond (if the patient is medically compromised)

(c) 2006, Kanchan Ganda, M.D.
Joint Prosthesis

- Staph. Aureus most commonly infects joint Prosthesis
- Staph. Aureus is often resistant to Penicillin

Antibiotics that can be used for Joint Prosthesis prophylaxis are:
- Cephalexin
- Cephadroxyl
- Clindamycin
- Azithromycin
- Clarithromycin

(c) 2006, Kanchan Ganda, M.D.

Prophylaxis Not Recommended

Prophylaxis *Not* Recommended

- Ostium Secundum ASD
- 6 months after surgical correction of ASD/ VSD/ PDA defect
- Coronary artery bypass surgery
- MVP without regurgitation
- Functional heart murmur caused by:
 - Severe anemia
 - Multiple pregnancies
 - Hyperthyroidism
- RF without valvular dysfunction
- Cardiac Pacemakers or Defibrillators

(c) 2006, Kanchan Ganda, M.D.
AHA Premedication Regimens

Standard Regimen:
- Amoxicillin: 2.0 g P.O (oral) 1 h before procedure

Non Penicillin allergic patients unable to take Oral medication:
- Ampicillin: 2.0 g I.M. or I.V. 30 min. before procedure

For Penicillin - Allergic Patients use any one of the following Antibiotics:
- Clindamycin: 600 mg P.O. 1 h before procedure
- Cephalexin: 2.0 g P.O. 1 h before procedure
- Cefadroxil: 2.0 g P.O. 1 h before procedure
- Azithromycin: 500 mg P.O. 1 h before procedure
- Clarithromycin: 500 mg P.O. 1 h before procedure

(c) 2006, Kanchan Ganda, M.D.

AHA Premedication Regimens

For Penicillin allergic patients unable to take Oral Medication use:

- Clindamycin, 600 mg IV 30 min. before procedure

or

- Cefazolin, 1.0 g IV or IM 30 min. before procedure

(c) 2006, Kanchan Ganda, M.D.
73. **Adult Blood Pressure Classification**

Adult Blood Pressure Classification

<table>
<thead>
<tr>
<th>Category</th>
<th>SBP: mmHg</th>
<th>DBP: mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><120</td>
<td><80</td>
</tr>
<tr>
<td>Pre Htn</td>
<td>120-139</td>
<td>80-89</td>
</tr>
<tr>
<td>Hypertension:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage I</td>
<td>140-159</td>
<td>90-99</td>
</tr>
<tr>
<td>Stage II</td>
<td>≥ 160</td>
<td>≥ 100</td>
</tr>
<tr>
<td>Defers Rx</td>
<td>≥ 180</td>
<td>≥ 110</td>
</tr>
</tbody>
</table>

(c) 2006, Kanchan Ganda, M.D.

74. **Hypertension: Types**

Hypertension: Types

Primary:
- More common
- Gradual in onset
- Age: Affects after 40
- S/S occur years after onset of Htn.
- Strong Family History (FH)
- Cause: Premature Artherosclerosis
- Htn. Is life long

Secondary:
- Less common
- Dramatic in onset
- Age: 1st-2nd Decade / 5th-6th Decade
- S/S occur at the start of the Htn.
- F.H. May/may not be present
- Causes: Endocrine tumors
 - Arterial Stenosis
 - Chronic Contraceptives
 - Chronic Steroids
- Surgical Rx or Drug withdrawal:
 - Htn. May or may not resolve

(c) 2006, Kanchan Ganda, M.D.
75. Hypertension and the Circulations

Hypertension and the Circulations

Htn can affect: Cerebral, Coronary, Renal or Peripheral Circulations

Involvement of the Cerebral Circulation can cause:
- Transient Ischemic Attacks (T.I.A.s)
- Cerebro Vascular Accidents (C.V.A.s)

Involvement of the Coronary Circulation can cause:
- Classic Angina: Stable or Unstable
- Myocardial Infarction (MI)

Involvement of the Renal Circulation can cause:
- Chronic Renal Failure (C.R.F.) / End Stage Renal Disease (E.S.R.D.)

Involvement of the Peripheral Circulation can cause:
- Intermittent Claudication

(c) 2006, Kanchan Ganda, M.D.

76. Transient Ischemic Attacks (T.I.A.)

Transient Ischemic Attacks (T.I.A.)

Clinical Features:
- The S/S last for seconds to minutes
- The S/S often recur over a 24 hour period
- The S/S completely resolve within 24 hours
- The patient does NOT experience loss of consciousness

(c) 2006, Kanchan Ganda, M.D.
77. Transient Ischemic Attacks (T.I.A.s)

Transient Ischemic Attacks (T.I.A.s)

The Sensory & / or Motor deficits S/S experienced are:
- Headaches and Disorientation
- Parasthesias: Tingling, numbness and / or weakness in the muscles
- Blurring of vision or Temporary loss of vision
- Slurring of speech or Temporary loss of speech

Vital Signs:
- The Pulse is Rapid and Bounding
- The Blood Pressure is always ELEVATED

(c) 2006, Kanchan Ganda, M.D.

78. Cerebrovascular Accident /C.V.A./ Stroke

Cerebrovascular Accident /C.V.A./ Stroke

Thrombus, Embolus or ruptured Cerebral Aneurysm results in a CVA

Clinical Features due to a Thrombus or an Embolus:
- Are Gradual in onset
- Loss of consciousness is rare
- Headaches, Dizziness & Progressive Neurological deficits occur
- The patient also experiences Nausea and Vomiting

Vital Signs:
- The Pulse is Rapid and Bounding
- The Blood Pressure is ELEVATED

(c) 2006, Kanchan Ganda, M.D.
Cerebrovascular Accident (C.V.A.)

Ruptured Aneurysm / Intracranial Hemorrhage Stroke is:
- Dramatic in onset
- Loss of consciousness is common
- Vital Signs:
 - The Pulse is Slow but occasionally can be Normal
 - The Respiration is Slow and Shallow
 - The BP is elevated
 - The BP can DROP with a massive bleed

(c) 2006, Kanchan Ganda, M.D.

Coronary Circulation: Classic Angina

Coronary Circulation: Classic Angina

- Classic Angina is due to Premature Artherosclerosis
- Classic Angina is precipitated by activity
- Activity increases the Myocardial oxygen demand
- Classic Angina can be classified as:
 - Stable
 - Unstable

Stable angina:
- Always brought on by increased activity
- Attacks are infrequent
- Treated with 1-2 Nitroglycerine, S.L. (sublingual)

(c) 2006, Kanchan Ganda, M.D.
81. Coronary Circulation: Classic Angina

Coronary Circulation: Classic Angina

Unstable Angina:
- Requires minimal or no activity for the Angina to occur
- More frequent attacks occur compared to before
- There is greater need for more NTG now than before
- Unstable Angina convert to a Myocardial Infarction (MI)
- S/S of Unstable Angina are the SAME as Stable Angina
- Vital Signs for Stable & Unstable Angina are the same

(c) 2006, Kanchan Ganda, M.D.

82. Classic Angina Pectoris

Classic Angina Pectoris

- Chest discomfort lasts for 2-5 minutes, max 10-15 minutes
- The Clinical Features experienced are:
 - The patient is motionless
 - Hunched over and with a closed fist across the chest
 - Anxiety, particularly if it is the first attack of Angina
 - Sweating
 - Chest tightness
- Vital Signs:
 - Pulse rapid and bounding
 - The BP is ELEVATED
 - There is some dyspnea if this is the first attack of Angina

(c) 2006, Kanchan Ganda, M.D.
83. Classic Angina Pectoris

Classic Angina Pectoris

Patients with Moderate to Severe Angina may give a H/O:

- Using Isordil / Isosorbide, a long acting Nitrate
- Using a Nitro Patch
- These patients at some future time can have an MI

(c) 2006, Kanchan Ganda, M.D.

84. Myocardial Infarction

Myocardial Infarction

“Crushing” pain that lasts more than 15 minutes to hours

- Clinical Features:
 - Acute distress
 - Pallor
 - Perspiration and cold moist skin
 - Nausea, Vomiting, and Abdominal bloating

- Vital Signs:
 - Rapid Thready Pulse; can frequently be irregular
 - DECREASED or DROPPING Blood Pressure
 - Respiration is shallow and the patient experiences dyspnea

(c) 2006, Kanchan Ganda, M.D.
85. Chronic Renal Failure (CRF)

Chronic Renal Failure (CRF)

- Initial H/O increased urine output: 1-3 L/day
- Associated H/O Nocturia (night urination)
- The urine output declines with progression of CRF

- Renal damage is judged by elevated serum Creatinine
- Normal serum Creatinine value is 0.4 - 1.2 mg/dL

- The renal status is considered compromised once the serum Creatinine value is above 1.2 mg/dL

(c) 2006, Kanchan Ganda, M.D.

86. Chronic Renal Failure (CRF)

Chronic Renal Failure (CRF)

- CRF is often associated with a progressive rise in the DBP
- Chronic renal failure is often associated with facial edema
- It is a "pitting" type of edema

To purify the blood, CRF / ESRD* patients may undergo:
- Peritoneal Dialysis
 or
- Hemodialysis

*ESRD: End Stage Renal Disease

(c) 2006, Kanchan Ganda, M.D.
87. Kidney Disease

Kidney Disease

Hemodialysis patients get premedicated for Dentistry.

Hemodialysis:
- Is done 3 times / week
- Duration of dialysis: 4 hours / turn
- Heparin is injected for the first 3 hours
- Treat patients on the "off" days of Dialysis
- If treatment is needed on day of dialysis, treat 6-8 hrs. after dialysis

(c) 2006, Kanchan Ganda, M.D.

88. Peripheral Circulation

Peripheral Circulation

Intermittent Claudication:
- Due to narrowing of the medium sized arteries of the legs
- Patient experiences severe pain in the calves or the legs on walking uphill or on an even surface
- The Patient has to suddenly stop the activity
- Rest relieves the discomfort

(c) 2006, Kanchan Ganda, M.D.
89. Sinusitis

Sinusitis

Sinusitis can involve:
- The Frontal, the Ethmoid or the Maxillary sinuses

S/S associated with Viral infection or Allergy sinusitis are:
- Fever, Headaches
- Postnasal drip, nasal discharge and nasal congestion
- Watery itchy eyes, itchy nose and itchy throat
- Sneezing
- Bacterial Sinusitis is not associated with a runny, itching nose or watery eyes

(c) 2006, Kanchan Ganda, M.D.

90. Sinusitis

Sinusitis

- Sinus infections cause headaches & facial pain
- The pain is more pronounced on leaning forward as the patient flexes the head towards the chest
- Application of mild pressure over the affected sinuses will elicit pain / tenderness
- Bacterial sinusitis is treated with antibiotics

(c) 2006, Kanchan Ganda, M.D.
Asthma

Asthma is a state of ACUTE Bronchial constriction causing Wheezing

Asthma is characterized by:

- **Wheezing:**
 - Wheezing occurs in *Expiration* at the start of the attack
 - Wheezing occurs in *Inspiration* also in a prolonged attack
- **Dyspnea and Shortness Of Breath (SOB)**
- **Coughing**
- The patient is not symptomatic between attacks
- There are 2 types of Asthma:
 1. Extrinsic asthma
 2. Intrinsic asthma

(c) 2006, Kanchan Ganda, M.D.

Extrinsic / Childhood / Allergy Associated Asthma

Extrinsic / Childhood / Allergy Associated Asthma

- Most common in Children
- Improves with age, often disappearing in adulthood
- If it persists (in about 1% of patients), it’s often mild
- An occasional patient may develop COPD, but it is rare

Precipitating Factors:
- Stress
- Allergens like dust, animal fur
- Drugs like Aspirin, NSAIDs, Penicillin

(c) 2006, Kanchan Ganda, M.D.
93. Intrinsic Asthma / Adulthood Asthma

Intrinsic Asthma / Adulthood Asthma

- Occurs around the age of 35 - 40
- Begins as a lung infection
- The infection triggers progressive, irreversible, destructive changes in the lung parenchyma
- Progressive dyspnea and asthma attacks occur
- Asthma attacks worsen over time
- Asthma attacks become more prominent and severe
- Progression towards Chronic Obstructive Pulmonary Disease (COPD) is very common

(c) 2006, Kanchan Ganda, M.D.

94. Chronic Obstructive Pulmonary Disease (COPD)

Chronic Obstructive Pulmonary Disease (COPD)

- COPD is a Progressive, Irreversible, Destructive disease state
- COPD is associated with persistent airway obstructions
- The Diseases present in a COPD patient are:
 - Chronic Bronchitis
 - Emphysema
 and / or
 - Intrinsic Asthma

Chronic Bronchitis definition:
- The patient with a H/O Chronic productive cough for:
 2-3 months of the year for 2 successive years

(c) 2006, Kanchan Ganda, M.D.
95. Chronic Obstructive Pulmonary Disease (COPD)

Chronic Obstructive Pulmonary Disease (COPD)

Emphysema:
- It is an irreversible dilation of airspaces distal to the terminal bronchioles, i.e; the alveoli
- Associated with destruction of the alveoli
- Alveolar surface for air exchange is decreased
- The patient experiences dyspnea and hypoxia
- Cyanosis can occur
- Over time the chest becomes barrel-shaped

(c) 2006, Kanchan Ganda, M.D.

96. Mycobacterium Tuberculosis (MTB)

Mycobacterium Tuberculosis (MTB)

- The My. Tuberculosum bacteria causes MTB
- It is an airborne infection

MTB affects areas of high O_2 tension:
- The Lungs:
 - The Hilum is most affected in Children
 - The Apex is most affected in Adults
- The Kidneys
- The Growing Bones
- The lungs are most commonly affected

(c) 2006, Kanchan Ganda, M.D.
97. Mycobacterium Tuberculosis (MTB)

Mycobacterium Tuberculosis (MTB)

- A Patient is said to be an "Open" Case when there is:
 - Chronic cough with expectoration
 - The expectorant can be with or without blood
 - The sputum droplets contain the MTB organism
 - The untreated "open" case is a health hazard
 - Exposure to an open case causes transmission of MTB
 - The sputum is negative after 2 weeks of anti-TB treatment
 - MTB is not transmitted if there is no coughing

(c) 2006, Kanchan Ganda, M.D.

98. Mycobacterium Tuberculosis (MTB)

Mycobacterium Tuberculosis (MTB)

The Symptomatic Patient gives a chronic H/O:
- Tiredness, Weakness, Fatigue
- Anorexia, Weight loss
- Headaches, Night Fevers, Night Sweats
- Cough with expectoration
- Expectorant could be with / without blood

(c) 2006, Kanchan Ganda, M.D.
99. Multi-Drug Resistant TB (MDR-TB)

Multi-Drug Resistant TB (MDR-TB)

MDR-TB can be caused by:
- Incomplete Treatment
- Interrupted Treatment
- Lack of adequate anti-TB Treatment
- The MDR-TB strains are resistant to conventional anti-TB treatment

MDR-TB is commonly seen in:
- HIV patients
- Homeless populations
- Individuals living in crowded environments

(c) 2006, Kanchan Ganda, M.D.