1. Streptococcus classification (1)

Streptococcus classification

- Classification hemolysis patterns
 Lancefield groups
 many species, *S. pyogenes*
 S. pneumoniae

- Not all species have a Lancefield group

2. Streptococcus classification (2)

Streptococcus classification

Hemolysis on Agar plates containing Sheep Blood

Lancefield Groups (A, B...T)

Major cell-wall carbohydrate antigens

β

Group A B C, G

Minute-colony

α and non-hemolytic, γ

Group D

S. pneumoniae Viridans

(c) 2004, Joan Mecsas, Ph.D.
3. Streptococcus classification (3)

Streptococcus classification

Hemolysis on Agar plates containing Sheep Blood

Lancefield Groups (A, B...T)

Major cell-wall carbohydrate antigens

β

Group A
B
C, G

S. agalactiae

α and non-hemolytic, γ

Minute colony

Group D

S. pneumoniae
Viridans

(c) 2004, Joan Mecsas, Ph.D.

4. Group B Strep GBS S. agalactiae

Group B Strep
GBS

S. agalactiae

Normally Inhabit lower GI
Female genital tract (20%)

neonatal sepsis, meningitis and pneumonia

20% fatal; 30-50% w/ permanent brain damage

(c) 2004, Joan Mecsas, Ph.D.
5. Streptococcus classification (4)

Streptococcus classification

Hemolysis on Agar plates containing Sheep Blood

Lancefield Groups (A, B...T)

Major cell-wall carbohydrate antigens

β

Group A B C, G

α and non-hemolytic, γ

Minute colony

Group D

S. pneumoniae Viridans

S. bovis

(c) 2004, Joan Mecsas, Ph.D.

6. Streptococcus bovis Group D Strep

Streptococcus bovis

Group D Strep

- Common bowel flora

- But when found in bloodstream correlates w/colon cancer >50%

(c) 2004, Joan Mecsas, Ph.D.
7. Streptococcus classification (5)

Streptococcus classification

Hemolysis on Agar plates containing Sheep Blood

Lancefield Groups (A, B...T)

- Major cell-wall carbohydrate antigens
- β
- Group A
- Group B
- Group C, G

α and non-hemolytic, γ

- Minute colony

Group D
- S. pneumoniae
- Viridans
- Enterococcus

(c) 2004, Joan Mecsas, Ph.D.

8. Enterococci

Enterococci

- Normally found in GI tract
- Normally resistance to cephalosporins and inhibited, but not killed by penicillin.
- Isolated at heart valves → endocarditis
- Vancomycin resistant (VRE)

(c) 2004, Joan Mecsas, Ph.D.
9. Streptococcus classification (6)

Streptococcus classification

Hemolysis on Agar plates containing Sheep Blood

Lancefield Groups (A, B...T)

<table>
<thead>
<tr>
<th>β</th>
<th>α and non-hemolytic, γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>Group D</td>
</tr>
<tr>
<td>B</td>
<td>S. pneumoniae</td>
</tr>
<tr>
<td>C, G</td>
<td>Viridans</td>
</tr>
</tbody>
</table>

Minute-colony

Subacute endocarditis
Nattually found on teeth

(c) 2004, Joan Mecsas, Ph.D.

10. Streptococcus classification (7)

Streptococcus classification

Hemolysis on Agar plates containing Sheep Blood

Lancefield Groups (A, B...T)

<table>
<thead>
<tr>
<th>β</th>
<th>α and non-hemolytic, γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>Group D</td>
</tr>
<tr>
<td>B</td>
<td>S. pneumoniae</td>
</tr>
<tr>
<td>C, G</td>
<td>Viridans</td>
</tr>
</tbody>
</table>

| S. pyogenes |

(c) 2004, Joan Mecsas, Ph.D.
Case

7 year old boy presents with high fever and sore throat, complains of stomach ache and nausea

O/E

Temp 104°F
White exudate on tonsils
Tender lymphadenopathy

Widespread rash over trunk and limbs

Diagnosis and Treatment

Ix:

Throat swab - rapid strep test and culture
(or just culture)

Presumptive diagnosis of Group A strep pharyngitis

Penicillin orally 10 days

Final diagnosis depends on culture of β-hemolytic cocci plus clinical signs

(c) 2004, Joan Mecsas, Ph.D.
13. Necrotizing Fasciitis Flesh eating bacteria (Group A Strep)...

Necrotizing Fasciitis
Flesh eating bacteria (Group A Strep)

- Often follows minor skin injury
 - Usually arm or leg, but can start any place
- Rapid sudden, severe pain in infected area
- Fever, nausea, vomiting
- Spreads rapidly along fascial planes
- High morbidity and mortality
- Treatment: Aggressively with antibiotics and sometimes surgery to remove dead tissue
- Not contagious, but associated with certain strains of Strep.

(c) 2004, Joan Mecsas, Ph.D.

14. Group A streptococcal diseases associated with exotoxins

Group A streptococcal diseases
associated with exotoxins

(c) 2004, Joan Mecsas, Ph.D.
15. Non-infectious complications following Group A Strep infection

Non-infectious complications following Group A Strep infection

Glomerulonephritis - following either pharyngitis or impetigo
- 10-15% attack rate
- Antigen-antibody-complement complex deposited in kidney
- Edema, smoky or rust colored urine, hypertension

(c) 2004, Joan Mecsas, Ph.D.

16. Non-infectious complications following Group A Strep infection

Non-infectious complications following Group A Strep infection

Acute Rheumatic Fever - ARF
- Follows pharyngitis and/or scarlet fever, if not treated,
- Does not follow impetigo
- Presents 1-5 weeks post pharyngitis
- In developing countries accounts for major cause of heart disease 25-40%
- Associated with certain strains of GAS with specific M proteins

(c) 2004, Joan Mecsas, Ph.D.
17. Damage in ARF

Damage in ARF

- Hypothesis: cross reactivity between specific immunity to GAS and host proteins:

 Molecular Mimicry
 - M protein and cardiac myosin, vimentin and elastin

 Damage heart valves (hear murmurs)

 Greater Susceptibility to Endocarditis

(c) 2004, Joan Mecsas, Ph.D.

18. Encounter/Transmission of Group A Streptococcus

Encounter/Transmission of Group A Streptococcus

- Natural reservoir- humans
- On skin and mucosal surfaces
- Overall carriage rate is 5-25%

- Pharyngitis-colder climates; inhaling aerosolization from infected people
- Impetigo-warmer climates/seasons; touch

(c) 2004, Joan Mecsas, Ph.D.
19. Entry/Spread of GAS Localized versus Systemic disease

Entry/Spread of GAS

Localized versus Systemic disease

Pharyngitis and impetigo - localized infection, attachment to epithelial cells on mucosal surfaces or minor trauma

Necrotizing fasciitis caused by entry through wound or trauma site and rapid spread along the fascial planes

(c) 2004, Joan Mecsas, Ph.D.

20. Virulence Factors

Virulence Factors

- Entry/attachment to cells
- Resistance to host defenses
- Spread
- Toxins → Scarlet fever, Toxic Shock

(c) 2004, Joan Mecsas, Ph.D.
21. Multiplication/Prevention of Phagocytosis

Multiplication/Prevention of Phagocytosis

- M protein—resistance to phagocytosis
 - binds to Factor H
 - Factor H binds C3b
 - blocks C3bBb formation

- binds to fibrinogen, forming dense coat which masks bacteria from complement binding

(c) 2004, Joan Mecsas, Ph.D.

22. Spread of GAS: Necrotizing Faciitis Secreted digestive enzym...

Spread of GAS: Necrotizing Faciitis Secreted digestive enzymes

Streptolysin O- pore forming toxin
 - binds to cholesterol in membrane,
 - inserts and lyses cells including neutrophils
 - O’xygen labile
Streptolysin S-pore forming toxin,
 - causes β-hemolysis on blood agar plates
Streptokinase-plasminogen activator
 - (breaks up blood clots)
DNaseB
Hyaluronidase-degrades hyaluronic acid

(c) 2004, Joan Mecsas, Ph.D.
23. Therapeutic Strategies

Therapeutic Strategies

No vaccine. M protein has 120 variants—other membrane proteins being tested.

10 day course of antibiotics for pharyngitis to prevent rheumatic fever—STILL Penicillin sensitive

Surgical intervention often critical for necrotizing fasciitis & treat with Clindamycin and Penicillin

(c) 2004, Joan Mecsas, Ph.D.

24. Streptococcus classification (8)

Streptococcus classification

Hemolysis on Agar plates containing Sheep Blood

Lancefield Groups (A, B...T)

Major cell-wall carbohydrate antigens

β

Group A

Group B

C, G

Minute-colony

α and non-hemolytic, γ

Group D

S. pneumoniae

Viridans

(c) 2004, Joan Mecsas, Ph.D.
25. **Streptococcus: Two Cases**

32 year old male smoker
Presents to family practitioner with fever, cough, right sided chest pain and shortness of breath on exertion
O/E Temp 100°F
 Signs in his right lung base

86 year old woman, brought to emergency room by son
Confused, not responsive to questions, difficulty breathing.
O/E Fever 103°F
 Neck stiffness, no rash
 Signs right lung base

(c) 2004, Joan Mecsas, Ph.D.

26. **Diagnosis**

Diagnosis

- Gram stain of sputum containing neutrophils and gram-positive diplococci
- Culture on blood agar plates
 - α hemolytic---green
 - Optochin sensitive

Pneumonia caused by *S. pneumoniae*

(c) 2004, Joan Mecsas, Ph.D.
Treatment

Historically Penicillin-BUT now at least 30% of clinical isolates are resistant

- Treat presumptive *S. pneumoniae* caused pneumonia with ceftriaxone until determine MIC of strain

- Treat meningitis with ceftriaxone and vancomycin

(c) 2004, Joan Mecsas, Ph.D.

Outcomes

- 32 year old male
 - Is released from hospital with antibiotics
 - At Fenway next evening for game

- 86 year old female
 - Admitted to hospital
 - Given antibiotics, BUT
 - Succumbs to pneumonia & sepsis 12 hours after entering hospital and before cultures are grown to determine drug susceptibilities

(c) 2004, Joan Mecsas, Ph.D.
Spread/Multiplication/Damage in Lung

1. Serous fluid—many bacteria—few inflammatory cells.
2. Early consolidation—neutrophil and red blood cell infiltrate—rusty brown sputum.
3. Late consolidation—alveoli packed with neutrophils.
4. Resolution—macrophages replace neutrophils

(c) 2004, Joan Mecsas, Ph.D.

Encapsulated Bacteria

- Polysacchride capsule—impairs phagocytosis
- Sepsis and meningitis
- Are cleared by spleen
 - *Streptococcus pneumoniae*,
 - *Neisseria meningitidis*
 - *Streptococcus agalactiae*
 - *Hemophilus influenzae*

(c) 2004, Joan Mecsas, Ph.D.
Risk Factors for pneumonia

- Pre-existing lung infection
- Cigarette smoking
- Alcohol consumption
- Excess fluid in lungs
- Splenectomy**
- Immunocompromised

Vaccine

Conjugative vaccine: 1999
7 capsular polysaccharides each conjugated to a protein
 Children under 5
 People with splenectomy
 Elderly
Streptococcus lab classification

- Gram positive cocci, short chains or diplococci
- Catalase negative
- Hemolysin pattern (not diagnostic of Strep. w/out catalase and gram stain)
- *S. pyogenes*
 - bacitracin sensitive
 - β-hemolytic
- *S. pneumoniae*
 - optochin sensitive
 - α-hemolytic

(c) 2004, Joan Mecsas, Ph.D.