1. Lyme Arthritis and the Seronegative Spondyloarthropathies

Lyme Arthritis and the Seronegative Spondyloarthropathies

(c) 2005, Robert A. Kalish, M.D.

2. Lyme Disease

Lyme Disease

- 1975: Allen Steere and colleagues investigate cluster of children with arthritis
- 1976: Lyme arthritis described, arthropod vector proposed
- 1982: *Borrelia burgdorferi* identified as causative agent

(c) 2005, Robert A. Kalish, M.D.
3. Lyme Disease - clinical stages

Lyme Disease - clinical stages

- Stage 1 (Early localized): days
 - erythema migrans rash at tick bite site
- Stage 2 (Early disseminated): weeks
 - flu-like illness,
 - cardiac, neurologic
- Stage 3 (Late) - months to years:
 - Lyme arthritis
 - Encephalopathy or Neuropathy

(c) 2005, Robert A. Kalish, M.D.

4. Lyme Arthritis and Spondyloarthropathy: Slide 4

Ixodes scapularis (deer tick)

(c) 2005, Robert A. Kalish, M.D.
5. Lyme Arthritis and Spondyloarthropathy: Slide 5

ERYTHEMA MIGRANS

Image removed due to copyright restrictions.

(c) 2005, Robert A. Kalish, M.D.

6. Lyme Arthritis and Spondyloarthropathy: Slide 6

ERYTHEMA MIGRANS

Image removed due to copyright restrictions.

(c) 2005, Robert A. Kalish, M.D.
Lyme Arthritis

- The only chronic inflammatory arthritis in which the etiology is known
- Perhaps the only chronic inflammatory arthritis that can be cured!
- Occurs in ~60% of untreated patients with *B. Burgdorferi* infection

(c) 2005, Robert A. Kalish, M.D.

Lyme Arthritis Cont’d

- **Pattern**: intermittent, recurrent attacks of swelling and pain in one or a few joints at a time, especially the knee
- **Usually**: monoarticular or oligoarticular, large joint
- **Spectrum**: short episodes of mild joint pain, to intermittent attacks over years most commonly, to chronic arthritis in about 10% of patients

(c) 2005, Robert A. Kalish, M.D.
Lyme Arthritis and Spondyloarthropathy

10. Lyme arthritis is due to active infection

Lyme arthritis is due to active infection

- Hypothesis - *B burgdorferi* avoids immune detection in synovium for months
- Arthritis occurs when T-cells activate against the bacteria
- Synovial lesion identical to RA
- PCR indicates presence of *B burgdorferi* in the joint of untreated Lyme arthritis patients

(c) 2005, Robert A. Kalish, M.D.
11. Lyme Arthritis Cont’d

- Most patients can be cured with oral antibiotic therapy
- A small percentage of patients have persistent inflammation and negative PCR on synovial fluid testing, suggesting that the spirochete has been eradicated and that the ongoing inflammation is due to another process

(c) 2005, Robert A. Kalish, M.D.

12. The Autoimmune Paradigm

The Autoimmune Paradigm

- A trigger (environmental antigen or infectious agent) in a genetically susceptible individual triggers an autoimmune process
- **RA** (unknown trigger + HLA B1*0401 = RA)
- **Lyme Arthritis** (B. Burdorferi + HLA B4B1*0401 = chronic persistent arthritis)
- **AS** (unknown trigger + HLA B27 = AS)

(c) 2005, Robert A. Kalish, M.D.
13. Lyme arthritis: Immunogenetic Susceptibility

Lyme arthritis: Immunogenetic Susceptibility

- Treatment resistant Lyme arthritis: high frequency of HLA-DRB1*0401 and related alleles
- Strong parallel to rheumatoid arthritis alleles
- Golden opportunity: study immune response in these patients
- However! *Borrelia burgdorferi* does not trigger RA

(c) 2005, Robert A. Kalish, M.D.

Cellular Immunity in Lyme Arthritis - OspA protein

- OspA serves as “stealth” protein: early in the infection there is at most a weak immune response to it
- Lyme Arthritis: OspA recognized by >70%
- In HLA-DRB1 susceptible patients:
 - Reactivity with OspA is associated with chronic Lyme arthritis
 - T cells reactive to specific OspA antigens concentrate in the joint

(c) 2005, Robert A. Kalish, M.D.
15. Molecular Mimicry

Molecular Mimicry

- Aberrant immune activation against self antigen triggered by the presence of a foreign antigen that shares molecular or antigenic properties with self
- The arthritogenic antigen in *B. Burgdorferi* has not been defined

(c) 2005, Robert A. Kalish, M.D.

16. Four Major Spondyloarthopathies

Four Major Spondyloarthopathies

- Ankylosing Spondylitis (AS)
- Inflammatory Bowel Disease Related Arthritis (IBD)
- Psoriatic Arthritis (PsA)
- Reactive Arthritis (Reiter’s Syndrome) (ReA)

(c) 2005, Robert A. Kalish, M.D.
17. Seronegative Spondyloarthropathies

Seronegative Spondyloarthropathies

- Seronegative (test negative for RF)
- Presence of HLA B27 (Class I)
- Inflammation of the sacroiliac joint and spine
- Enthesitis: Inflammation at insertion sites of tendon or ligament to bone
- Asymmetric Inflammatory Arthritis
- Extrarticular Disease

(c) 2005, Robert A. Kalish, M.D.

18. Lyme Arthritis and Spondyloarthropathy: Slide 18

Anatomy of the Enthesis

Image removed due to copyright restrictions.

(c) 2005, Robert A. Kalish, M.D.
19. Ankylosing spondylitis (AS) - HLA-B27 association

Ankylosing spondylitis (AS) - HLA-B27 association

- AS patients: >95% HLA-B27 positive
- <5% chance of AS if are HLA-B27 +
 - But family history of AS increases risk
- How does HLA-B27 cause disease:
 - fails to eliminate organism?
 - presents arthritogenic peptide?
 - Answer is not known

(c) 2005, Robert A. Kalish, M.D.

20. Ankylosing spondylitis - clinical features

Ankylosing spondylitis - clinical features

- Men>women as much as 5:1 but some question this as possible bias
- mean age of onset in 3rd decade
- inflammatory pain - AM stiffness; improves with activity
- X-rays show gradual fusion of spine, other involved joints
- enthesitis common (in contrast to RA)

(c) 2005, Robert A. Kalish, M.D.
21. Lyme Arthritis and Spondyloarthropathy: Slide 21

Normal sacroiliac joints

Image removed due to copyright restrictions.

(c) 2005. Robert A. Kalish, M.D.

22. Lyme Arthritis and Spondyloarthropathy: Slide 22

Ankylosing spondylitis - fused sacroiliitis joints

Image removed due to copyright restrictions.

(c) 2005. Robert A. Kalish, M.D.
23. Lyme Arthritis and Spondyloarthropathy: Slide 23

Spinal fusion in ankylosing spondylitis

Image removed due to copyright restrictions.

(c) 2005. Robert A. Kalish, M.D.

24. Normal posture and posture in patient with ankylosing spondy...

Normal posture and posture in patient with ankylosing spondylitis

Image removed due to copyright restrictions.

(c) 2005. Robert A. Kalish, M.D.
25. Lyme Arthritis and Spondyloarthropathy: Slide 25

Ankylosing Spondylitis - typical postural changes

Image removed due to copyright restrictions.

(c) 2005. Robert A. Kalish, M.D.

26. Ankylosing spondylitis clinical features (cont)

Ankylosing spondylitis clinical features (cont)

- Extraarticular features a hallmark:
 - acute anterior uveitis/iritis (33%)
 - aortitis (1%)
 - pulmonary fibrosis - upper lobes (1%)
 - oral ulcers

(c) 2005. Robert A. Kalish, M.D.
Spondyloarthropathies - Other

- Psoriatic arthritis
 - occurs in 5% of psoriasis patients
 - closest to RA in chronicity and pattern of joint
distribution to RA but still distinct
 - minimal HLA-B27 association
- Reactive arthritis
 - follows urogenital (chlamydia) or GI infection
 - moderate HLA-B27 association

(c) 2005, Robert A. Kalish, M.D.

Spondyloarthropathies - other

- Inflammatory bowel disease associated
 arthritis
 - spondylitic form associated with B27 and
 independent of bowel activity
 - peripheral arthritis form not B27 associated and
 associated with active bowel inflammation

(c) 2005, Robert A. Kalish, M.D.
Psoriatic or reactive arthritis - “sausage toe”

Shown Shaded

(c) 2005, Robert A. Kalish, M.D.

Pathogenesis - hypotheses

- **Molecular mimicry**: *Klebsiella aeruginosa* and the HLA-B27 molecule share similar peptide sequence
- **Antigens in joint** - bacterial antigens found in synovium of ReA patients
- **Organism in joint** - chlamydia DNA found in synovium of patients with ReA.

(c) 2005, Robert A. Kalish, M.D.
31. Treatment of spondyloarthropathies

Treatment of spondyloarthropathies

- NSAIDS/COX2
 - symptomatic relief but do not halt disease
- DMARDs – (eg methotrexate)
 - some disease modifying effect but not against spinal progression
- Anti TNF agents
 - great promise

(c) 2005, Robert A. Kalish, M.D.