1. Introduction to the Rheumatic Diseases and Joint Physiology...

Introduction to the Rheumatic diseases and Joint physiology

(c) 2005. Robert A. Kalish, M.D.

2. Welcome to musculoskeletal pathophysiology!

Welcome to musculoskeletal pathophysiology!

• Two major themes
 - Disorders of the musculoskeletal system
 - Autoimmune diseases: immunology, pathophysiology and clinical manifestations

(c) 2005. Robert A. Kalish, M.D.
3. What is Rheumatology?

What is Rheumatology?

1. **Structural disorders** of the musculoskeletal system
 not due to direct trauma
 - **Anatomy:**
 - Joints – e.g.: osteoarthritis
 - Periarticular structures – tendons, bursas, ligaments
 - **Etiology:** degenerative or related to repeated use

2. **Immune system disorders** leading to autoimmune disease
 - An autoimmune disease is considered “rheumatologic” when involvement is either
 1. predominantly or exclusively of the joints
 2. of more than a single organ system
 - Lupus – rheumatologic
 - primary autoimmune hemolytic anemia – not rheumatologic

(c) 2005, Robert A. Kalish, M.D.

4. What is Rheumatology?

What is Rheumatology?

3) Chronic Pain disorders – a subset of these are characterized by musculoskeletal pain though there is no pathology on pathologic examination:

 eg: fibromyalgia – a syndrome of chronic pain and fatigue

(c) 2005, Robert A. Kalish, M.D.
5. Course Lectures and Topics

Course Lectures and Topics

- Chronic Arthritis – Rheumatoid arthritis
- Chronic Arthritis – Spondyloarthropathy and Lyme Arthritis
- Osteoarthritis
- Nonarticular Rheumatism
- Pediatric Rheumatic Diseases
- Crystal Arthritis

(c) 2005. Robert A. Kalish, M.D.

6. Course Lectures and Topics

Course Lectures and Topics

- Connective Tissue Diseases
 - Systemic Lupus Erythematosus
 - Scleroderma
- Vasculitis

(c) 2005. Robert A. Kalish, M.D.
Key Concepts in Musculoskeletal Pathophysiology Course

- What is the primary anatomic structure targeted by the disease process?
 - RA, Juvenile arthritis, Lyme arthritis - Synovial tissue
 - Spondyloarthopathies - Entheses (tendon or ligament insertion into bone)
 - Osteoarthritis - Cartilage
 - Lupus – multiple sites of inflammation
 - Scleroderma – vascular system, fibrosis of skin and other organs, inflammation (autoimmunity) in multiple tissues
 - Vasculitis – blood vessel walls

(c) 2005, Robert A. Kalish, M.D.

Key Concepts

- Genetic Influences
- Mechanism of Immune system dysfunction
- Immune system-environmental interaction
- Clinical applications

(c) 2005, Robert A. Kalish, M.D.
9. Classification of Joints

Classification of Joints

- Synarthrodial joints
 - Juncure of the cranial plates
- Amphiarthrodial (fibrocartilagenous) joints
 - Costosternal joints
- Diarthrodial joints
 - Nearly all familiar moveable joints

(c) 2005, Robert A. Kalish, M.D.

10. Articular cartilage

Articular cartilage

Composed of
- Chondrocytes
- Extracellular Matrix
 - Type II collagen meshwork with hydrated proteoglycans
 - Small amount of type IX and XI collagen

Articular cartilage is
- avascular
- aneural

(c) 2005, Robert A. Kalish, M.D.
11. Synovium

Synovium

- Lines diarthrodial joints (all parts except articular cartilage), some tendons, bursae
- Composition
 - Matrix layer
 - Thin, loosely constructed and varied by site
 - Features numerous microfibrils and proteoglycans
 - Hyaluronan a major component and filter of protein
 - Synovial cells – simplified:
 - Type A (macrophage-like)
 - Type B (fibroblast-like)

(c) 2005. Robert A. Kalish, M.D.

12. Joint capsule

Joint capsule

- Mainly type I collagen
- Some thin fibrillar type III
- Innervated by mechanoreceptors and free nerve terminals

(c) 2005. Robert A. Kalish, M.D.
13. Physiology – synovial transport

Physiology – synovial transport

- Pathway: synovial capillary → synovial interstitium → synovial fluid → hyaline cartilage
- Features include:
 - Capillaries are fenestrated (small solutes, water)
 - **Glucose** has transport system **into** joint
 - Proteins enter inversely proportional to size
 - Thus albumin > globulin in joint fluid (healthy joint)
 - Hyaluronan plays major filter role for large proteins

(c) 2005, Robert A. Kalish, M.D.

14. Synovial fluid

Synovial fluid

- Transudate of plasma
- Hyaluronan: a glycosaminoglycan that is a major matrix element of synovial fluid (made by type B synovial cells)
 - High viscosity
- Cellular content low
 - WBC < 200 cells/mm³

(c) 2005, Robert A. Kalish, M.D.
15. Joint lubrication

Joint lubrication

Lubrication mechanisms
- **Boundary lubrication** –
 - lubrication at contact points of cartilage on cartilage
 - The glycoprotein lubrican the major element
- **Hydrodynamic lubrication**
 - Lubrication where film of fluid remains between cartilage layers

(c) 2005, Robert A. Kalish, M.D.

16. The diseased joint

The diseased joint

Categorization:
- By initiating mechanism: mechanical vs. inflammatory
- By synovial fluid white cell count:
 - WBC<2,000 – noninflammatory
 - WBC>2,000 - inflammatory

The above two categorizations are usually but not always in accord. The latter is the more true pathogenic differentiator

(c) 2005, Robert A. Kalish, M.D.
17. The diseased joint – gross pathology in acute inflammation

The diseased joint – gross pathology in acute inflammation

- Must differentiate clinically from involvement of skin, veins and periarticular structures (tendons, ligaments, bursae)

- Joint takes position of least intrasynovial pressure

(c) 2005. Robert A. Kalish, M.D.

18. Physiology of acute joint inflammation

Physiology of acute joint inflammation

- Vasodilatation
- Edema
- Neutrophilic infiltration
- Depolymerization of hyaluronic acid
 - Reactive oxygen species do this
 - Loss of viscosity in joint results
- Synovial fluid volume increases massively
- Synovial ischemia

(c) 2005. Robert A. Kalish, M.D.
19. Transfer of solutes in the acutely inflamed joint

Transfer of solutes in the acutely inflamed joint

Contrasting effects on protein and glucose

- Protein – the normal structural and cellular blocks to diffusion are disrupted
- Glucose
 - Transport system from capillary into joint fails
 - Consumption is increased
 - Increase in anaerobic metabolism (glycolysis turned on)
 - Increased cell mass devouring glucose

(c) 2005, Robert A. Kalish, M.D.

20. Clinical implications of acute synovitis

Clinical implications of acute synovitis

Joint damage varies:
- Bacterial arthritis – rapid cartilage loss
- Crystal arthritis – attacks are severe but self-limited so damage slow over time
- Rheumatoid arthritis – Synovial tissue turns from Jimmy Buffet gentle tropical to "Katrina-like" destructive pannus and gradually erodes cartilage and bone
- Lupus – Immune complex deposition in synovium does not elicit destructive synovitis

(c) 2005, Robert A. Kalish, M.D.
21. Mechanism of joint damage in acute arthritis

Mechanism of joint damage in acute arthritis

- Reactive oxygen species released by neutrophils are damaging
 - Hyaluronan depolymerized
- Proteolytic enzymes are released
- Prostaglandins and leukotrienes

(c) 2005. Robert A. Kalish, M.D.

22. Synovial fluid analysis

Synovial fluid analysis

- WBC cells – very useful in diagnosis
- Crystal content
 - Gout (monosodium urate)
 - Pseudogout (calcium pyrophosphate)
- Glucose
 - low in infection, rheumatoid arthritis
- Culture

(c) 2005. Robert A. Kalish, M.D.
23. Synovial fluid analysis

Synovial fluid analysis

<table>
<thead>
<tr>
<th>Arthritis Type</th>
<th>White Cell Count</th>
<th>Crystal analysis</th>
<th>Glucose</th>
<th>Culture/Gram Stain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septic Arthritis</td>
<td>>100,000</td>
<td>none</td>
<td>low</td>
<td>protein/positive</td>
</tr>
<tr>
<td>Inflammatory Arthritis</td>
<td>>10,000</td>
<td>none</td>
<td>low</td>
<td>none</td>
</tr>
<tr>
<td>R.A.</td>
<td>>1,000</td>
<td>none</td>
<td>low</td>
<td>none</td>
</tr>
<tr>
<td>Osteoarthritis</td>
<td><1,000</td>
<td>none</td>
<td>normal</td>
<td>none</td>
</tr>
<tr>
<td>Lyme</td>
<td><2,000</td>
<td>none</td>
<td>normal</td>
<td>none</td>
</tr>
<tr>
<td>Lupus</td>
<td><5,000</td>
<td>none</td>
<td>normal</td>
<td>none</td>
</tr>
<tr>
<td>Psoriatic Arthritis</td>
<td>>2,000</td>
<td>positively birefringent</td>
<td>normal</td>
<td>none</td>
</tr>
<tr>
<td>Reactive Arthritis</td>
<td>>2,000</td>
<td>negatively birefringent</td>
<td>normal</td>
<td>none</td>
</tr>
</tbody>
</table>

*routine bacteriologic techniques cannot easily detect Borrelia Burgdorferi

(c) 2005, Robert A. Kalish, M.D.

24. Diagnosis and treatment of acute arthritis

Diagnosis and treatment of acute arthritis

- ALWAYS consider bacterial infection
- Use joint aspiration to help diagnose
- Immobilize, then mobilize
- Infection
 - Must be drained effectively
 - Appropriate antibiotics immediately

(c) 2005, Robert A. Kalish, M.D.