1. Nutrition and Aging

Nutrition and Aging

Lisa M. Neff, M.D.
Fellow in Clinical Nutrition and Endocrinology
USDA Human Nutrition Research Center on Aging at Tufts
and Tufts-New England Medical Center

(c) 2005, Lisa Neff, M.D.

2. Nutrition and Aging

Nutrition and Aging

- Malnutrition in the Elderly
- The Effects of Aging on 3 of the Main Determinants of Nutritional Status
 1. Nutrient Intake
 2. Nutrient Absorption (vit B12, calcium)
 3. Nutrient Metabolism (vit D, protein, energy)
- Obesity
- Case Study: Osteoporosis

(c) 2005, Lisa Neff, M.D.
3. Nutrition and Aging: Slide 3

4. Increased Risk

Elderly individuals are at increased risk of both malnutrition and obesity

(c) 2005, Lisa Neff, M.D.
5. Prevalence of Malnutrition in Elderly Populations

Prevalence of Malnutrition in Elderly Populations

Community-dwelling:
3 to 11%
Nursing home residents:
17 to 65%
Hospital inpatients:
15 to 40%

(c) 2005, Lisa Neff, M.D.

6. Malnutrition associations

Malnutrition is associated with:

Increased risk of
- Functional disability
- Nosocomial infections
- Perioperative complications
- Morbidity and mortality
And
- Longer hospital length of stay
- Increased health-care expenditures

(c) 2005, Lisa Neff, M.D.
7. Determinants of Nutritional Status

Determinants of Nutritional Status

- Intake of nutrients
- Absorption of nutrients
- Nutrient losses
- Nutrient metabolism

(c) 2005, Lisa Neff, M.D.

8. Determinants of Nutritional Status

Determinants of Nutritional Status:
3 out of 4 are profoundly affected by aging

- Intake of nutrients
- Absorption of nutrients
- Nutrient losses
- Nutrient metabolism

(c) 2005, Lisa Neff, M.D.
9. Nutrient Intake in the Elderly

Nutrient Intake in the Elderly

(c) 2005, Lisa Neff, M.D.

10. Factors which Affect Nutrient Intake in the Elderly

Factors which Affect Nutrient Intake in the Elderly

- Limited mobility
- Financial hardship
- Visual impairment
- Social isolation
- Mood disorders
- Medications with anorectic effects
- Alcohol, tobacco and drug use
- Adherence to special diets
- Dysgeusia
- Poor oral or dental health
- Dysphagia

(c) 2005, Lisa Neff, M.D.
11. Tooth Loss, Nutrition and Aging

Tooth Loss, Nutrition and Aging

- 13 to 42% of individuals over age 65 have lost all their natural teeth (BRFSS, 2002)
- Individuals with inadequate dentition have lower micronutrient intakes
- Extensive tooth loss is associated with an increased risk of malnutrition

(c) 2005, Lisa Neff, M.D.

12. Micronutrient Intake and Dental Status

Micronutrient Intake and Dental Status

(c) 2005, Lisa Neff, M.D.
13. Absorption of Nutrients

Absorption of Nutrients: Gastrointestinal Function in the Elderly

(c) 2005, Lisa Neff, M.D.

14. Gastrointestinal Changes in Aging

Gastrointestinal Changes in Aging

- Higher prevalence of atrophic gastritis
- Higher prevalence of esophageal dysmotility
- Increased prevalence of lactose intolerance
- Delayed gastric emptying time
 - Total intestinal transit time is unchanged
- Pancreatic exocrine function is preserved under normal dietary conditions

(c) 2005, Lisa Neff, M.D.
15. Atrophic Gastritis

16. Atrophic Gastritis

Type A: pernicious anemia
- autoimmune disorder (antibodies to parietal cells or intrinsic factor)

Type B
- chronic inflammatory disorder
- associated with *Helicobacter pylori* infection
- results in decreased secretion of hydrochloric acid, pepsin and intrinsic factor
17. Stomach acid releases B12

Stomach acid releases B12 bound to proteins in food. Intrinsic factor forms a complex with B12 – the complex binds to IF receptors in the ileum, and B12 is absorbed.

(Image removed due to copyright restrictions.)

18. Consequences of Atrophic Gastritis: Vitamin B12

Consequences of Atrophic Gastritis: Vit B_{12}

- Decreased secretion of hydrochloric acid and pepsin
- Decreased release of protein-bound B12 in food
- Increased density of bacterial populations in the small intestine
- Decreased availability (and absorption) of vitamin B12

(c) 2005, Lisa Neff, M.D.
19. Nutritional Consequences of Atrophic Gastritis

- Decreased availability and absorption of food-bound **vitamin B12** (not crystalline B12)
- Decreased absorption of **calcium carbonate**, if it is taken without food (Recker, 1985)
- Decreased absorption of **non-heme iron** (Skikne, Lynch et al. 1981)

20. Nutrition and Aging: Slide 20

Data from Krasinski et al. J Am Geriatr Soc. 1986;34:800-6
21. Nutrition and Aging: Slide 21

(c) 2005, Lisa Neff, M.D.

22. B12 Insufficiency

B12 insufficiency results in elevated serum homocysteine and methylmalonic acid

- The two vitamin B12-dependent enzymes; L-methylmalonyl-CoA mutase (left) and methionine synthase (right).

(c) 2005, Lisa Neff, M.D.
23. Abnormal Serum Homocysteine, Methylmalonic Acid and Folate...

Abnormal Serum Homocysteine, Methylmalonic Acid and Folate by Serum B₁₂ level

(Image removed due to copyright restrictions.)

© 2005, Lisa Neff, M.D.

24. Response of Serum MMA to Parenteral B12 Administration

Response of Serum MMA to Parenteral B12 Administration

© 2005, Lisa Neff, M.D.
25. Consequences of Vitamin B12 Deficiency

Consequences of Vitamin B_{12} Deficiency

- Ineffective DNA synthesis \rightarrow Megaloblastic anemia
- Inadequate myelin synthesis \rightarrow Neurologic damage
- Hyperhomocysteinemia \rightarrow Cardiovascular disease

(c) 2005, Lisa Neff, M.D.

26. The Effects of Aging on Nutrient Metabolism

The Effects of Aging on Nutrient Metabolism

(c) 2005, Lisa Neff, M.D.
27. Changes in Nutrient Metabolism and Requirements

Aging and Disease are Associated with Many Changes in Nutrient Metabolism & Requirements:

- Altered vitamin D metabolism in aging and chronic kidney disease (resulting in increased calcium needs)
- Protein requirements may increase with aging
- Decreased clearance of potassium, phosphorus, and magnesium in chronic kidney disease
- Body composition changes → decreased energy expenditure in aging
- Increased energy expenditure in Parkinson’s disease, cancer, infection, congestive heart failure and chronic pulmonary disease
- Vitamin A metabolism may decrease with aging

(c) 2005, Lisa Neff, M.D.

28. Vitamin D Metabolism

Vitamin D Metabolism

\[
\begin{align*}
7\text{-dehydrocholesterol} & \downarrow \\
\text{Cholecalciferol (vitamin D₃)} & \downarrow \\
25\text{-hydroxycholecalciferol} & \downarrow \\
1,25\text{-dihydroxycholecalciferol} & \downarrow
\end{align*}
\]

(c) 2005, Lisa Neff, M.D.
29. Biosynthesis of Vitamin D

Biosynthesis of Vitamin D

(Image removed due to copyright restrictions.)

(c) 2005, Lisa Neff, M.D.

30. Serum 25-hydroxyvitamin D levels decline with age

Serum 25-hydroxyvitamin D levels decline with age

Data from NHANES III, 1988-94

(c) 2005, Lisa Neff, M.D.
31. Nutrition and Aging: Slide 31

![Prevalence of Vitamin D Deficiency in the Elderly](image)

Data from Gloth et al. JAMA. 1995; 274:1683-6.
(c) 2005, Lisa Neff, M.D.

32. Consequences of Vitamin D Deficiency

- **Secondary hyperparathyroidism**
- **Bone disease:**
 - osteomalacia (adults) or rickets (children) due to insufficient mineralization of osteoid
 - Increased bone turnover
 - Increased fracture risk
- **Decreased absorption of calcium.** In cases of severe deficiency, may cause hypocalcemia

Muscle weakness and pain?

(c) 2005, Lisa Neff, M.D.
33. Nutrition and Aging: Slide 33

Intestinal calcium absorption

(Image removed due to copyright restrictions.)

(c) 2005, Lisa Neff, M.D.

34. Impaired Vitamin D Metabolism

Due to Impaired Vitamin D Metabolism, Calcium Absorption is Decreased in Aging

- Decreased biosynthesis of vitamin D
- Relative intestinal resistance to 1,25-dihydroxyvitamin D (Pattanaungkul, Riggs et al. 2000)
- Impaired conversion of 25-OH to 1,25-(OH)₂ vitamin D in chronic kidney disease

(c) 2005, Lisa Neff, M.D.
35. **Protein Metabolism**

Protein Metabolism May Also Change in Aging

- Current RDA for protein is 0.8 g/kg/day, which may be inadequate in the elderly.
- Protein requirements in elderly appear to be **increased**, although the etiology is not clear (increased catabolism v. decreased synthesis).
- Most Americans eat much more than the RDA for protein, but **older individuals are more likely to consume less than the RDA**.
 - 25% of healthy free-living elderly in the Boston area consume less than the RDA for protein. (Hartz, 1992)

36. **Nutrient Metabolism in the Elderly**

Nutrient Metabolism in the Elderly:

the Effect of Body Composition Changes
37. Sarcopenia

Sarcopenia

- Sarcopenia
 - From the Greek, meaning “poverty of flesh”
 - Defined as the decrease in lean body mass seen with aging
- Often associated with a concomitant increase in fat mass
- Total body weight may not change

(c) 2005, Lisa Neff, M.D.

38. Change in appendicular muscle mass

Change in appendicular muscle mass as a function of age

(Image removed due to copyright restrictions.)

(c) 2005, Lisa Neff, M.D.
39. Prevalence of Sarcopenia

Prevalence of Sarcopenia

(Image removed due to copyright restrictions.)

From Baumgartner et al., Am J Epidem 1998; 147:755-63

(c) 2005, Lisa Neff, M.D.

40. Sarcopenia is a Multifactorial Disorder

Sarcopenia is a Multifactorial Disorder

- Decreased levels of **sex hormones** (testosterone and DHEA)
- Decreased levels of **growth hormone and insulin-like growth factor 1 (IGF-1)**
- Increased **cytokine** production
- **Neuromuscular changes**
- **Physical inactivity**
- **Malnutrition**, especially protein deficiency
- **Smoking**

(c) 2005, Lisa Neff, M.D.
Consequences of Sarcopenia

- Decreased resting energy expenditure
- Decreased insulin sensitivity
- Diminished muscle strength
- Increased risk of physical disability
- Increased risk of falls
- Increased risk of mortality

(c) 2005, Lisa Neff, M.D.

Exercise And Nutritional Supplementation (360 kcal) For Physical Frailty In Very Elderly People

(Fiatarone, NEJM, 1994)

(c) 2005, Lisa Neff, M.D.
43. Obesity in the Elderly

44. Body Mass Index

Body Mass Index

\[BMI = \frac{\text{Weight (kg)}}{\text{Height}^2 (m)} \]

<table>
<thead>
<tr>
<th>Classification</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td>< 18.5</td>
</tr>
<tr>
<td>Normal weight</td>
<td>18.5 - 24.9</td>
</tr>
<tr>
<td>Overweight</td>
<td>25.0 - 29.9</td>
</tr>
<tr>
<td>Obesity, class I</td>
<td>30.0 - 34.9</td>
</tr>
<tr>
<td>Obesity, class II</td>
<td>35.0 - 39.9</td>
</tr>
<tr>
<td>Obesity, class III</td>
<td>> 40</td>
</tr>
</tbody>
</table>

Chart source: NIH

(c) 2005, Lisa Neff, M.D.
Prevalence of Obesity Increases with Age

(c) 2005, Lisa Neff, M.D.

Diseases Associated with Obesity

- Cardiovascular disease
- Stroke
- Hypertension
- Diabetes
- Metabolic Syndrome
- Dislipidemia
- Cancer
 - Breast cancer (in postmenopausal women)
 - Endometrial cancer
 - Colorectal cancer
 - Esophageal cancer
 - Gastric cancer
 - Renal cell carcinoma
 - Liver cancer
 - Pancreatic cancer
 - Multiple myeloma
 - Non-Hodgkin's Lymphoma
- GERD
- Cholelithiasis
- Non-alcoholic steatohepatitis
- Sleep apnea
- Obesity Hypoventilation Syndrome
- Asthma
- Pseudotumor cerebri
- Osteoarthritis
- Gout
- Infertility
- Polycystic Ovary Syndrome
- Urinary Incontinence

(c) 2005, Lisa Neff, M.D.

Panel A: data from the Nurses’ Health Study.

Panel B: data from the Health Professionals Follow-up Study.

(c) 2005, Lisa Neff, M.D.

Case Study:

Osteoporosis

(c) 2005, Lisa Neff, M.D.
49. Nutritional Factors in the Development of Osteoporosis

Nutritional Factors in the Development of Osteoporosis

- **Inadequate nutrient intake**
 - Decreased intake of calcium, vitamin D (and protein?)

- **Impaired absorption of nutrients**
 - Decreased absorption of calcium carbonate due to atrophic gastritis
 - Decreased calcium absorption due to intestinal resistance to 1,25-dihydroxyvitamin D

- **Decreased biosynthesis of vitamin D**
 - Decreased sun exposure
 - Decreased capacity of skin to synthesize vitamin D

- **Altered vitamin D metabolism**
 - Impaired conversion of 25-OH to 1,25-(OH)₂ vitamin D in chronic kidney disease

(c) 2005, Lisa Neff, M.D.

50. Metabolic and Lifestyle Factors in the Development of Osteoporosis

Metabolic and Lifestyle Factors in the Development of Osteoporosis

- **Low body weight** and loss of muscle mass (sarcopenia)
- **Hormone deficiencies**
- **Sedentary lifestyle**
- **Smoking**

(c) 2005, Lisa Neff, M.D.
Mrs. M. is a 75-year-old widow who lives alone. She has a history of hypertension and hyperlipidemia, for which she takes several medications. She follows a low-cholesterol diet prescribed by her doctor years ago. She smoked for many years but quit about 20 years ago. Her husband died 1 year ago, and since that time she has lost ten pounds. She says “it’s too much trouble to cook for one person,” and she often skips meals.

(c) 2005, Lisa Neff, M.D.
53. Mrs. M.

Mrs. M.

When she eats, her usual diet is as follows:

- Breakfast: toast with jam and margarine, tea with honey
- Lunch: vegetable soup, crackers, water with lemon
- Dinner: turkey sandwich with lettuce, sliced tomato
- Snack: fruit cocktail or crackers

(c) 2005, Lisa Neff, M.D.

54. Mrs. M.

Mrs. M.

When she eats, her usual diet is as follows:

- Breakfast: toast with jam and margarine, tea with honey
- Lunch: vegetable soup, crackers, water with lemon
- Dinner: turkey sandwich with lettuce, sliced tomato
- Snack: fruit cocktail or crackers

Diet is low in calcium, vitamin D, and protein

(c) 2005, Lisa Neff, M.D.
Mrs. M.

Mrs. M. reports that she is not as spry as she once was. She is sedentary and spends most of her time indoors.

Last week Mrs. M. slipped on a loose rug in her apartment and fell on her left side. She was admitted to the hospital with a hip fracture and was found to have osteoporosis. BMI at admission was 17.

(c) 2005, Lisa Neff, M.D.

Mrs. M.

Mrs. M. reports that she is not as spry as she once was. She is sedentary and spends most of her time indoors.

Last week Mrs. M. slipped on a loose rug in her apartment and fell on her left side. She was admitted to the hospital with a hip fracture and was found to have osteoporosis. BMI at admission was 17.

(c) 2005, Lisa Neff, M.D.
57. Effect of Calcium and Vitamin D Supplementation

Effect of Calcium and Vitamin D Supplementation on Bone Density in Men and Women 65 Years of Age or Older

- 3 year double-blind, randomized, placebo-controlled study
- n=389 healthy, community-dwelling men and women age 65 and older
- Ca + D had a positive impact on change in bone mineral density
- Fracture incidence: 5.9% in treatment group versus 12.9% in placebo group
 (RR 0.6, 95%CI 0.2-0.9, p=.02)

Data from Dawson-Hughes et al. NEJM 1997;337:670-6.

(c) 2005, Lisa Neff, M.D.

58. Calcium and Vitamin D Supplements

Calcium and Vitamin D Supplements Reduce Tooth Loss in the Elderly

- 3 year double-blind, randomized, placebo-controlled trial
- n=145
- Treatment group received 500 mg calcium citrate and 700 IU cholecalciferol daily
- 13% of treatment group and 27% of placebo group lost one or more teeth
 (OR 0.4, 95%CI 0.2-0.9, p<.05)

(c) 2005, Lisa Neff, M.D.
Summary

Nutrient intake can be affected.

Biosynthesis of vitamin D declines.

Absorption of vitamin B12 and calcium decreases.

Changes in nutrient metabolism occur in aging (e.g. energy expenditure declines and protein requirements may increase).
61. **Nutritional Needs Change with Aging**

Increased requirements:
- calcium
- vitamin D
- vitamin B12
- (vitamin B6)
- (protein)

Decreased requirements:
- calories
- (vitamin A)

(c) 2005, Lisa Neff, M.D.

62. **Quote**

We cannot live the afternoon of life according to the program of life's morning: For what was great in the morning will be little at evening, and what in the morning was true will at evening have become a lie.

- *Carl Jung*

(c) 2005, Lisa Neff, M.D.