1. Lecture 2 - Slide 1

2. The Science of Public Health: Epidemiology and Biostatistics

Stanton H. Wolfe, DDS, MPH
Associate Professor, Division Director:
Public Health and Community Service

(c) 2005, Stanton H. Wolfe, D.D.S.

2. Epidemiology and Biostatistics

The Science of Public Health

- **Epidemiology:** What...Where...Who...When...?
 - The basic science of public health
 - The study of the distribution and determinants of the frequency of diseases and conditions in specified populations during specified time periods

- **Biostatistics:** How...
 - The basic science of public health
 - The study of measurement of biological or health data

(c) 2005, Stanton H. Wolfe, D.D.S.
5. The Science of Public Health

![Graph showing the well-designed study]

6. Lecture 2 - Slide 8

![Graph comparing pain relief over time for different medications]

(c) 2005, Stanton H. Wolfe, D.D.S.
The Science of Public Health

Mean - the arithmetic average of a set of values
Median - the middle value(s) in the ordered set
Mode - the value in a frequency distribution that occurs most often

Edentulous Patients Screened

<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>9</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>M</td>
<td>18</td>
</tr>
<tr>
<td>A</td>
<td>27</td>
</tr>
<tr>
<td>M</td>
<td>23</td>
</tr>
<tr>
<td>J</td>
<td>18</td>
</tr>
<tr>
<td>J</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>9</td>
</tr>
<tr>
<td>S</td>
<td>7</td>
</tr>
<tr>
<td>O</td>
<td>54</td>
</tr>
<tr>
<td>N</td>
<td>18</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
</tr>
</tbody>
</table>

Total = 200
Mean = 200/20 = 10.00
Median = (9+18)/2 = 13.50
Mode = Bimodal = 9 and 18

The Science of Public Health: Normal (Gaussian) Distribution...

Mean = Median = Mode

(c) 2005, Stanton H. Wolfe, D.D.S
9. Epidemiology and Biostatistics: Ratio, Proportion, Rate, Frequency

- **Ratio** - the relationship between two measures expressed as \(\frac{a}{b} \)

- **Proportion** - a type of ratio in which the numerator is included in the denominator, expressed as a percentage:
 \[
 \left(\frac{X}{X+Y} \right) \times 100
 \]

(c) 2005, Stanton H. Wolfe, D.D.S.

10. Epidemiology and Biostatistics: Ratio, Proportion, Rate, Frequency

- **Rate** - a time-specific proportion; the basic measure of disease occurrence; expresses the probability of risk of a disease in a defined population over a period of time

- **Frequency** = Rate
 \[
 \text{Numerator} / \text{Denominator}
 \]
 during a specified **time** period

(c) 2005, Stanton H. Wolfe, D.D.S.
11. Epidemiology and Biostatistics: Incidence and Prevalence Rates

- **Incidence Rates**
 - Direct measure of risk (probability) that healthy people will develop a disease or condition during a specified period of time
 - Tells us the rate at which new disease occurs in a defined, previously disease-free group of people
 - Basic tool to study causality (etiology) of disease

(c) 2005, Stanton H. Wolfe, D.D.S.

12. Epidemiology and Biostatistics: Incidence and Prevalence Rates

- **Incidence Rates (IR)**

\[
\text{# of new cases of a disease or condition} \quad \frac{\text{Total # in population at risk for the disease or condition}}{\text{over a period of time}}
\]

Types of study: Cohort, Prospective

(c) 2005, Stanton H. Wolfe, D.D.S.
13. Epidemiology and Biostatistics: Incidence and Prevalence Rates

- **Prevalence Rates**
 - Measure the disease burden: the number of people in the total general population who have the disease at a given time.
 - Tells us the point prevalence: the probability of people having a disease at a given point in time, or over a short period of time – the period prevalence.

(c) 2005, Stanton H. Wolfe, D.D.S.

14. Epidemiology and Biostatistics: Incidence and Prevalence Rates

- **Prevalence Rates**
 - # of existing cases of a disease or condition
 - # in the total population
 - At a point in time

Types of Studies: Cross-Sectional, Retrospective, Survey

(c) 2005, Stanton H. Wolfe, D.D.S.
15. Epidemiology and Biostatistics: Incidence and Prevalence Rates

- High or low prevalence is **not** a measure of risk or causality
 - **Low Prevalence:**
 - Low incidence?
 - High cure rate?
 - Short course of disease?
 - High virulence, rapidly fatal?
 - **High Prevalence:**
 - Increase survival rate?
 - Improved detection?

(c) 2005, Stanton H. Wolfe, D.D.S.

16. Epidemiology and Biostatistics: Relative Risk, Odds Ratio, Attributable Risk

- Relative Risk = Risk Ratio (RR)
 - Critical measure for determining strength of association, for assessing the causal (etiological) role of a risk factor for disease

\[
\frac{IR_{disease\ positive,\ risk\ positive}}{IR_{disease\ positive,\ risk\ negative}}
\]

(c) 2005, Stanton H. Wolfe, D.D.S.
17. Epidemiology and Biostatistics: Incidence and Prevalence Rates

Odds Ratio (OR)
- Calculated as the **RR** when **IR** is very low

Odds that risk **positive** are disease positive

Odds that risk **negative** are disease positive

(c) 2005, Stanton H. Wolfe, D.D.S.

18. Epidemiology and Biostatistics: Incidence and Prevalence Rates

Attributable Risk (AR)
- The risk of disease in individuals **exposed** to the risk factor, vs. those who are **not** exposed
- Provides an estimate of the number of cases of disease that might be prevented if exposure to the risk factor is eliminated

\[
AR = \text{Incidence rate of disease and risk factors positive} - \text{Incidence rate of disease and risk factors negative}
\]

(c) 2005, Stanton H. Wolfe, D.D.S.
19. Epidemiology and Biostatistics: Evaluating Outcomes: Risk a...

![Epidemiology and Biostatistics: Evaluating Outcomes: Risk and Causality](image1)

(c) 2005, Stanton H. Wolfe, D.D.S.

20. Epidemiology and Biostatistics: Evaluating Outcomes: Risk a...

![Epidemiology and Biostatistics: Evaluating Outcomes: Risk and Causality](image2)

(c) 2005, Stanton H. Wolfe, D.D.S.
21. Epidemiology and Biostatistics: Evaluating Outcomes: Association and Causality

- **Spurious** – from chance or bias

- **Indirect** – RF(A) appears to → Outcome (C)
 Actually, RF(A) associated w/ RF (B) → Outcome (C)

- **Causal** – RF(A) → Outcome (C) …IF
 1. (A) precedes (C)
 2. Changes in (A) → changes in (C)
 3. (A) does NOT → (C) because of (B)

(c) 2005, Stanton H. Wolfe, D.D.S.

22. Epidemiology and Biostatistics: Evaluating Outcomes: Association and Causality

- **Strength of association**
 - measured by RR

- **Dose-response association**

- **Consistency of association**
 - correlating studies: replication of findings by different methods, multiple testing
 - many lines of converging evidence

(c) 2005, Stanton H. Wolfe, D.D.S.
23. Epidemiology and Biostatistics: Evaluating Outcomes: Association and Causality

Temporal association
Specificity of association
 - How tight does RF predict outcome
 - Ideally, 1:1
Plausibility
 - Coherence with scientific knowledge

(c) 2005, Stanton H. Wolfe, D.D.S.

24. Epidemiology and Biostatistics: Evaluating Outcomes: Association and Causality

Impediments to etiologic investigation
 - No known etiologic agent
 - Multifactorial agents
 - Long latency
 - Indefinite onset
 - Different effects of factors on onset and progress of disease
 - Confounding and bias

(c) 2005, Stanton H. Wolfe, D.D.S.
Epidemiology and Biostatistics: Describing the performance of a test

Positive and negative test results
- True positive (TP)
- False positive (FP)
- True negative (TP)
- False negative (FP)

Sensitivity
- The probability that diseased individuals will have a positive test result
 \[= \text{TPR} = \frac{TP}{TP + FN} \text{ (all disease positive)} \]

Specificity
- The probability that disease-free individual will have a negative test result
 \[= \text{TNR} = \frac{TN}{TN + FP} \text{ (all disease negative)} \]
27. Epidemiology and Biostatistics: Describing the performance of a test

- **Predictive value positive**
 - The probability that individuals with a positive test have the disease
 - \(PVP = \frac{TP}{TP + FP} \) (all with positive test)

- **Predictive value negative**
 - The probability that individuals with a negative test do not have the disease
 - \(PVN = \frac{TN}{TN + FN} \) (all negative test)

(c) 2005, Santon H. Wolfe, D.D.S.

28. Epidemiology and Biostatistics: Describing the performance of a test

- **Reliability (Precision)**
 - Test gives consistent results (standard spread of two frequency distributions), random error may not be accurate
 - Improved by replication and standardization

- **Accuracy**
 - Two frequency distributions true to positivity criteria, systemic error
 - Not improved by replication and standardization

(c) 2005, Santon H. Wolfe, D.D.S.
29. Epidemiology and Biostatistics: Evaluating Outcomes

![Epidemiology and Biostatistics: Evaluating Outcomes](image)

(c) 2005, Stanton H. Wolfe, D.D.S.